戋与粒子物理	自然单

0

宇宙线相关粒子物理知识

基本相互作用

第一节 粒子物理概述

余钊焕

中山大学物理学院

http://yzhxxzxy.github.io

2019 年 LHAASO 暑期学校 山东大学青岛校区 8 月 18 日至 26 日

余钊焕 (中山大学)

粒子物理概述

2019年8月 1/32

宇宙线与粒子物理	自然单位制	基本相互作用	粒子	粒子运动学	衰变和散射
●000000	00	0000000	0000	000000	000000
宇宙线与粒子	物理参考书				

- T. K. Gaisser, Cosmic Rays and Particle Physics, Cambridge University Press, 1th edition, 1990 (有中译本)
- T. K. Gaisser, R. Engel, E. Resconi, *Cosmic Rays and Particle Physics*, Cambridge University Press, 2nd edition, 2016
- Particle Data Group (PDG), *Review of Particle Physics*, Phys. Rev. D98, 030001 (2018)
- D. Griffiths, Introduction to Elementary Particles, Wiley-VCH, 2nd edition, 2008 (有中译本)
- ◎ 杜东生,杨茂志,《粒子物理导论》,科学出版社,2015
- **③ 肖振军,吕才典**,《粒子物理学导论》,科学出版社,2016
- F. Halzen, A. D. Martin, *Quarks and Leptons: An Introductory Course in Modern Particle Physics*, John Wiley & Sons Inc., 1982
- L. B. Okun (translated from Russian by V. I. Kisin), *Leptons and Quarks*, North Holland Publishing Co., 1980

余钊焕 (中山大学)

粒子物理概述

宇宙线与粒子物理	自然单位制	基本相互作用	粒子	粒子运动学	衰变和散射
○●○○○○	00	0000000	0000	000000	000000
宇宙线					

粒子物理概述

(中山大学)

余钊焕

2019年8月 3/32

宇宙线与粒子物理	自然单位制	基本相互作用	粒子	粒子运动学	衰变和散射
○○●○○○	00	0000000	0000	000000	000000
宇宙线各成	分丰度				

♀ 奇偶效应: 原子序数 Z 为偶数的原子核比奇数的结合得更紧,丰度更高
 ※ 两族核散裂产物 Li-Be-B (C 和 O 散裂) 和 Sc-Ti-V-Cr-Mn (Fe 散裂) 在
 宇宙线中的丰度远高于太阳系中的丰度

🔆 这些散裂产物由宇宙线与星际介质碰 撞产生、据此推断宇宙线从产生到观测 间穿过的平均物质量为 $X \simeq 5 \text{ g/cm}^2$ 银盘质子数密度是 $\rho_{\rm N} \simeq 1 \, {\rm cm}^{-3}$,因 而这个物质量对应的距离为 $l = \frac{X}{2} \simeq 1000 \text{ kpc}$ $m_p \rho_N$ ≫ 银盘半高度 0.1 kpc 久之后才能逃逸到星系际空间

余钊焕 (中山大学)

粒子物理概述

 宇宙线与粒子物理
 自然单位制
 基本相互作用
 粒子
 粒子运动学
 衰变和散射

 000000
 000000
 000000
 000000
 000000
 000000

 宇宙线与粒子物理的联系

20 世纪 30 年代, 宇宙线观测是研究高能粒子
 的唯一途径。在宇宙线实验中发现的新粒子包括
 正电子 (1932), μ 子 (1936), π[±] 介子 (1947),
 Λ⁰ 重子、K⁰_s 介子、K⁰_L 介子、K[±] 介子、Ξ 重子
 和 Σ 重子等奇异粒子 (1947-1953)

 1948 年以后,粒子加速器兴起,宇宙线研究 与粒子物理研究渐渐分离。早期加速器实验中发 现的新粒子包括 π⁰ 介子 (1950) 和反质子 (1955)

C. Anderson 利用云室 和磁场发现正电子

🔆 不过,宇宙线与粒子物理仍然具有密切联系

粒子物理提供了理解和描述宇宙线相互作用的基础

宇宙线观测为粒子物理研究提供了更多实验数据,例如,中微子振荡的发现得益于对太阳和大气中微子的测量

宇宙线与粒子物理	自然单位制	基本相互作用	粒子	粒子运动学	衰变和散射
000000●	00	0000000	0000	000000	000000
粒子物理学					

※ 粒子物理学,也称为高能物理学,是研究物质的基本结构和基本相互作用的科学,理论基础是结合量子力学和狭义相对论的量子场论。

余钊焕 (中山大学)

粒子物理概述

2019年8月 7/32

宇宙线与粒子物理	自然单位制	基本相互作用	粒子	粒子运动学	衰变和散射
0000000	●O	0000000	0000	000000	000000
自然单位制					

♀ 在粒子物理学中,为简便起见,经常采用自然单位制,取 c = ħ = k_B = 1

常数	国际单位制	自然单位制引起的数值关系
光速	$c = 299 792 458 \mathrm{m s^{-1}}$	$1 \text{ s} = 2.998 \times 10^8 \text{ m}$
约化普朗克常数	$\hbar=1.055\times10^{-34}~\rm Js$	$1 \text{ s}^{-1} = 6.582 \times 10^{-22} \text{ MeV}$
玻尔兹曼常数	$k_{\rm B} = 1.381 \times 10^{-23} ~\rm JK^{-1}$	$1 \text{ K} = 8.617 \times 10^{-5} \text{ eV}$

自然单位制下,长度量纲与时间相同,是能量量纲的倒数,能量、质量、
 动量和温度具有相同量纲,可将能量单位电子伏特 (eV) 视作唯一基本单位

● 粒子物理常见的长度单位是费米 (1 fm = 10^{-15} m),它与能量单位 MeV 的关系是 1 fm⁻¹ = 197.3 MeV

狭义相对论中的能动量关系表达成 E² = m² + |p|²,其中 m 为静止质量

) 质能关系表达成 $E = \gamma m$,其中洛伦兹因子 $\gamma = (1 - v^2)^{-1/2}$

精细结构常数 α = e²/(4πε₀ħc) 没有量纲,在任何单位制下数值为 1/(137.036)
 自然单位制不可能将 ħ、c、ε₀ 和 e 这四个常数同时取为 1
 在粒子物理学中,时常再取真空介电常数 ε₀ = 1 (洛伦兹-亥维赛单位制),则真空磁导率 μ₀ = (ε₀c²)⁻¹ = 1

🌔 不同于高斯单位制,此时<mark>麦克斯韦方程组</mark>中不会出现<mark>无理数</mark> 4π

 $\nabla \cdot \mathbf{E} = \rho, \quad \nabla \cdot \mathbf{B} = 0, \quad \nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}, \quad \nabla \times \mathbf{B} = \mathbf{J} + \frac{\partial \mathbf{E}}{\partial t}$

○ 这样的单位制称为有理化的自然单位制
 ○ 4π 因子出现在库仑定律中,点电荷 Q 的库仑势表达成 Φ = $\frac{Q}{4\pi r}$ ☆ 精细结构常数表达成 α = $\frac{e^2}{4\pi}$,单位电荷量 e = $\sqrt{4\pi a}$ = 0.3028 没有量纲

其木相万作田					
宇宙线与粒子物理	自然单位制	基本相互作用	粒子	粒子运动学	衰变和散射
000000	00	●000000	0000	000000	000000

- 🔦 人类对物质间**相互作用**的认识随着对物质**结构**的深入研究而不断加深
- 按照目前的认识,组成物质的基本单元是粒子,自然界中存在四种基本相互作用,支配着粒子的运动和转化
- 引力相互作用
 最先认识的两种长程作用,与日常生活最为相关
 电磁相互作用
- ③ 强相互作用 一短程作用,将夸克束缚在核子中、核子束缚在原子核中
- 🗿 弱相互作用 👉 短程作用,引起原子核的 β 衰变
- 🔦 描述相互作用性质的要素:
- 🌒 源 👉 决定相互作用的种类
- 🌓 相互作用常数 👉 决定相互作用的强度
- 🌔 媒介粒子 👉 传递相互作用的粒子,是相互作用场的量子
- 🌛 力程 👉 相互作用的有效范围

宇宙线与粒子物理	自然单位制	基本相互作用	粒子	粒子运动学	衰变和散射
0000000	00	○●○○○○○	0000	000000	000000
引力相互作用					

- 🔦 所有物质都参与引力相互作用
- 引力的源是<mark>质量</mark>,假想中的媒介粒子叫引力子。
- () 相互作用常数是牛顿引力常数: $\frac{G_{\rm N}}{4\pi} = 5.34 \times 10^{-40} \, {\rm GeV}^{-2}$
 - 🕗 引起的束缚态:行星系(如太阳系)、恒星系(如银河系)、星系团

粒子物理概述

2019年8月 11/32

宇宙线与粒子物理	自然单位制	基本相互作用	粒子	粒子运动学	衰变和散射
0000000	00	00●0000	0000	000000	000000
电磁相互作用					

№ 所有带电粒子都参与电磁相互作用
 ● 电磁相互作用的源是电荷,媒介粒子是光子
 ● 相互作用常数可用精细结构常数表示: $\alpha = \frac{e^2}{4\pi} = \frac{1}{137.036}$ ● 引起的束缚态: 原子、分子

┽ 19 世纪中叶,麦克斯韦将电和磁统一在电动 力学的方程组中。20 世纪中叶建立起量子电动力学,它是第一个自洽的相对论性量子理论。

宇宙线与粒子物理	自然单位制	基本相互作用	粒子	粒子运动学	衰变和散射
000000	00	0000000	0000	000000	000000
强相互作用					

原子核内部核子(质子和中子)间的作用力可以抵消质子间的同性电磁排 斥力,使原子核稳定存在。这说明核子间存在不同于引力和电磁相互作用的 另一种相互作用,它的强度还强于电磁相互作用,因而被称为强相互作用。 描述强相互作用的基本理论是量子色动力学。

● 强相互作用的源是色荷,媒介粒子是胶子

 ● 相互作用常数是强耦合常数: $\alpha_s = \frac{g_s^2}{4\pi} \sim \mathcal{O}(1)

 ● 引起的束缚态: 介子、重子、原子核$

由胶子传递的夸克间强相互作用可称为<mark>色相互作用</mark>, 它使夸克结合成介子和重子。核子间强相互作用是色 相互作用的<mark>剩余作用</mark>。这类似于分子间的范德瓦尔斯 力,它的根源是电磁相互作用。强相互作用的<mark>力程很</mark> 短,约为 10⁻¹⁵ m,故作用范围仅在相邻核子之间。

宇宙线与粒子物理	自然单位制	基本相互作用	粒子	粒子运动学	衰变和散射
000000	00	00000●00	0000	000000	000000
弱相互作用					

№ 原子核 β 衰变的半衰期为几秒到几年, π[±] 介子和 K_s^0 介子的寿命分别为
 2.6 × 10⁻⁸ s 和 8.9 × 10⁻¹¹ s, 这些作用时间与典型的电磁或强相互作用时间
 相比, 要长 10⁵ – 10²⁰ 倍。这意味着支配这些衰变的是一种**非常弱**的相互作
 用,称为弱相互作用。它与电磁相互作用一起,由电弱统一理论描述。

● 弱相互作用的源是弱同位旋和弱超荷,媒介粒子是 W[±] 和 Z⁰ 玻色子 ● 相互作用常数是费米常数: $G_{\rm F} = \frac{g^2}{4\sqrt{2}m_W^2} = 1.166 \times 10^{-5} \, {\rm GeV}^{-2}$

) 弱相互作用强度太弱,力程极短,通常不会引起束缚态

W[±] 和 Z⁰ 的质量分别为 80.4 和 91.2 GeV,比质 子质量大两个量级,严重压低 GeV 能标以下的衰 变过程,表现为相互作用时间很长且力程极短。当 相互作用能标远高于 Z⁰ 的质量时,弱相互作用的 强度与电磁相互作用相当。

基本相互作用	目对比				
宇宙线与粒子物理	自然单位制	基本相互作用	粒子	粒子运动学	衰变和散射
000000	00	00000●0	0000	000000	000000

	强相互作用	电磁相互作用	弱相互作用	引力
源	色荷	电荷	弱同位旋、弱超荷	质量
相互作用强度	$\alpha_{\rm s} = \frac{g_{\rm s}^2}{4\pi}$	$\alpha = \frac{e^2}{4\pi}$	$G_{ m F}m_p^2$	$\frac{G_{\rm N}m_p^2}{4\pi}$
	$\sim \mathcal{O}(1)$	$\sim 1/137$	$\sim 10^{-5}$	$\sim 5 imes 10^{-40}$
媒介粒子	胶子	光子	W^{\pm} 和 Z^{0}	引力子?
力程	1 fm	∞	1/400 fm	∞
典型作用时间	10^{-23} s	$10^{-16} \mathrm{~s}$	10^{-10} s	\gtrsim yr
典型束缚态	强子	原子	/	太阳系

▲ 质子参与四种基本相互作用。表中,为了给出弱相互作用和引力的无量纲相互作用强度,以质子质量 m_p = 0.938 GeV 为基准进行估算。

宇宙线与粒子物理	自然单位制	基本相互作用	粒子	粒子运动学	衰变和散射
000000	00	000000●	0000	000000	000000
势能					

$$\gtrsim$$
 距离为 r 的两个带电物体对应的电势为 $V_{\rm EM}(r) \sim -rac{lpha}{r}$

🔆 电磁势能随距离增大而衰减,与距离成反比关系

譯 弱相互作用势能为 $V_{\text{weak}}(r) \sim -\frac{g^2}{4\pi} \frac{1}{r} \exp(-m_W r)$,其中 g 是弱耦合常数

☆ 距离大于 $\frac{1}{m_W} \simeq \frac{1}{400}$ fm 之后,指数因子使弱相互作用迅速衰减

譯 强相互作用势能为 $V_{\text{strong}}(r) \sim -\frac{4}{3} \frac{\alpha_s}{r} + kr$

- 🌔 在短距离处,第一项主导,行为与电磁和弱作用类似,不过相互作用更强
- 🜗 在长距离处,第二项主导,导致夸克禁闭
- 在宏观距离上不可能将带有色荷的粒子分开,因此所有强子都是色中性的

900000	00	0000000	●000	000000	000000
基本粒子					

- ▲本粒子指没有发现内部结构的粒子★ 三代费米子

 - 中微子: 电子型中微子 (ν_e), μ 子型中微子 (ν_μ), τ 子型中微子 (ν_τ)
 - 上型夸克: 上夸克 (u), 粲夸克 (c), 顶夸克 (t)
- 下型夸克: 下夸克 (d), 奇夸克 (s), 底夸克 (b)

🞏 矢量玻色子

电弱规范玻色子:光子 (γ), W[±], Z⁰

• 强规范玻色子: 8 种胶子 (g)

🎏 标量玻色子: Higgs 玻色子 (H⁰)

研究基本粒子间的<mark>强、电磁</mark>、弱相互作 用建立起来的量子色动力学和电弱统一 理论,合起来称为粒子物理标准模型

标准模型基本粒子和相互作用

余钊焕 (中山大学)

2019年8月 17/32

宇宙线与粒子物理	自然单位制	基本相互作用	粒子	粒子运动学	衰变和散射
0000000		0000000	○●○○	000000	000000
复合粒子					

- **复合粒子指具有内部结构的粒子 原 原子核**:由质子和中子组成(如氘,氘,³He,⁴He)

 强子:由夸克组成的强相互作用束缚态

 介子:由一个正的价夸克和一个反的价夸克组成
 *何*如, π⁺(ud̄), π⁻(dū), π⁰((uū - dd̄)/√2)
 - 重子:由三个价夸克组成
 例如,质子 p(uud),中子 n(udd), Λ⁰(uds)

 Ω_{ccc}^{++}

自旋 3/2 重子二十重态

赝标量介子十六重态

矢量介子十六重态

余钊焕 (中山大学)

粒子物理概述

2019年8月 18/32

粒子其木性质				000000	000000
000000	00	0000000	0000	000000	000000
宇宙线与粒子物埋	目然里位制	基本相互作用	粒子	粒子运动字	

- 稳定性:大多数粒子是不稳定的。较重的粒子可能通过强、电磁和弱相互 作用衰变成较轻的粒子,除非有一些对称性保证衰变不能发生。
 - 未观测到衰变的粒子: 质子 p,正负电子 e^{\pm} ,光子 γ ,三代中微子 ν_e , ν_{μ} , ν_{τ}
 - 寿命长于 10⁻¹⁰ s 的粒子(相对稳定,产生后能够飞行较长距离):

 μ^{\pm} , π^{\pm} 介子, K^{\pm} 介子, 中子 n, Λ^{0} 重子, K_{L}^{0} 介子等

● 寿命为 10⁻¹² − 10⁻¹⁰ s 之间的粒子(产生后能够飞行一段距离):

 τ^{\pm} , $K_{\rm S}^0$ 介子, D^0 介子, D^{\pm} 介子, B^0 介子, B^{\pm} 介子等

• 寿命短于 10^{-12} s 的粒子: W^{\pm} , Z^{0} , t, H^{0} , π^{0} 介子, ρ^{0} 介子, ρ^{\pm} 介子等

- 性质参数:质量、寿命(或衰变宽度)、自旋、电荷、磁矩、其它量子数等
- 正反粒子:反粒子是粒子的共轭态,质量、寿命和自旋与正粒子相同,所有内部相加性量子数(如电荷、重子数、奇异数等)的大小与正粒子相同, 符号却相反。所有内部相加性量子数均为0的粒子称为纯中性粒子(如光 子、Z⁰、π⁰等),它的反粒子是它本身。

宇宙线与粒子物理	自然单位制	基本相互作用	粒子	粒子运动学	衰变和散射
000000	00	0000000	000●	000000	000000
粒子基本性质					

- 电荷: 粒子的电菏是量子化的,以电子的电荷量绝对值 e = 1.6 × 10⁻¹⁹ C 为基本单位。电荷守恒定律严格成立。大多数粒子的电荷是 e 的整数倍。
 不过,夸克具有分数电菏,上型夸克的电荷为 + ²/₃e,下型夸克的电荷为 ¹/₃e。夸克组成的强子仍然具有整数电荷。
- 政色子:自旋为整数,如 0、1、2 等,服从玻色一爱因斯坦统计
 - 标量玻色子(自旋为 0): H⁰, π 介子, K 介子, η 介子等
 - 矢量玻色子(自旋为 1):光子,胶子,W[±], Z⁰, ρ 介子, J/ψ 介子, Υ 介子等
- ◎ 费米子: 自旋为半整数, 如 1/2、3/2、5/2 等, 服从费米-狄拉克统计
 - 自旋为 1/2 的费米子:带电轻子,中微子,夸克,质子,中子,Λ⁰ 重子等
 - 自旋为 3/2 的费米子: △ 重子, Ω⁻ 重子, Ω⁺⁺ 重子等

宇宙线与粒子物理	自然单位制	基本相互作用	粒子	粒子运动学	衰变和散射
0000000	00	0000000	0000	●00000	000000
能量、动量	和质量				

粒子物理学常常研究高速运动的粒子,需要在狭义相对论框架下描述粒子的运动。平直时空中的闵可夫斯基度规通常约定为

$$g_{\mu\nu} = g^{\mu\nu} = \begin{pmatrix} +1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix}, \quad \mu, \nu = 0, 1, 2, 3$$

[▲] 粒子的**能量** *E* 和 **3** 维动量 **p** 构成 **4** 维动量 $p^{\mu} = (E, \mathbf{p}) \circ p^{\mu}$ 是一个洛伦 兹逆变矢量,对应的协变矢量为 $p_{\mu} = g_{\mu\nu}p^{\nu} = (E, -\mathbf{p}) \circ p^{\mu}$ 的内积 $p^{2} \equiv p \cdot p \equiv p^{\mu}p_{\mu} = g_{\mu\nu}p^{\mu}p^{\nu} = g^{\mu\nu}p_{\mu}p_{\nu} = E^{2} - |\mathbf{p}|^{2} = m^{2}$

是一个<mark>洛伦兹不变量</mark>,即在洛伦兹变换下不变,在所有惯性系中有相同的值。 ● *m* 是粒子的(静止)质量

() 自由运动的粒子满足质壳条件 $E^2 = m^2 + |\mathbf{p}|^2$,即 $E = \sqrt{m^2 + |\mathbf{p}|^2}$) 粒子的 **3 维速度**定义为 $\mathbf{v} = \mathbf{p}/E$

宇宙线与粒子物理	自然单位制	基本相互作用	粒子	粒子运动学	衰变和散射
000000	00	0000000	0000	○●○○○○	000000
洛伦兹变换					

🗑 <mark>洛伦兹变换</mark>将一个洛伦兹矢量在一个惯性参考系 🏾 中的测量值变换成它 在另一个惯性参考系 Σ' 中的测量值

 \bigcirc 设 Σ' 系相对于 Σ 系的运动速度为 $m{eta}$,粒子在 Σ 系中的能量和动量分别 为 E 和 p,记 p 在平行于 β 方向上的分量为 p_1 ,在垂直于 β 方向上的分量 为 \mathbf{p}_{T} ,则粒子在 Σ' 系中的能量和动量为

动足缩短和	动铀延缓	0000000	0000	00000	000000
宇宙线与粒子物理	自然单位制	基本相互作用	粒子	粒子运动学	衰变和散射

♀ 时空坐标 x^µ = (t, x) 是洛伦兹矢量,服从洛伦兹变换 $\begin{pmatrix}
t' \\
x'_{L}
\end{pmatrix} = \begin{pmatrix}
\gamma & -\gamma |\beta| \\
-\gamma |\beta| & \gamma
\end{pmatrix}
\begin{pmatrix}
t \\
x_{L}
\end{pmatrix}, x'_{T} = x_{T}.$

🔦 引起两个相对论效应

- 运动的尺子变短:从静止参考系 Σ 中观察固定在运动参考系 Σ'中的一个物体,则它在平行于 β 方向上的长度 L' 变短为 L = L'/γ < L'
- **② 运动的时钟变慢**:运动参考系 Σ' 中的时间间隔 $\Delta t'$ 比静止参考系 Σ 中的时间间隔 Δt 长,满足 $\Delta t' = \gamma \Delta t > \Delta t$

● μ 子质量 m = 106 MeV, 寿命 $\tau = 2.2 \times 10^{-6}$ s; 对于能量 E = 106 GeV 的 μ 子, $\gamma = E/m = 10^3$, 因而飞行寿命会延长到 $\tau' = 2.2 \times 10^{-3}$ s ● π^{\pm} 介子质量为 140 MeV, 寿命为 2.6 × 10⁻⁸ s, 能量为 1.4 GeV 时从 产生到衰变平均可以飞行七十多米,能量为 14 GeV 时则可达到七百多米

宇宙线与粒子物理	自然单位制	基本相互作用	粒子	粒子运动学	衰变和散射
0000000	00	0000000	0000	000●00	000000
质心系					
<mark>桬</mark> 对粒子能动	量的实验测量	是在 <mark>实验室参考</mark>	<mark>系</mark> 中进行的	;不过,对于剑	多粒
子系统,在 <mark>质ι</mark>	这参考系中描述	^达 粒子运动状态通	國常会更加简	i单	

▲ 质心系定义为使系统总动量为零的参考系,满足 $\mathbf{p}_{CM} \equiv \sum_{i} \mathbf{p}_{i}^{CM} = \mathbf{0}$ 《 系统的质心系能量(质心能) $E_{CM} \equiv \sum_{i} E_{i}^{CM}$ 是一个洛伦兹不变量:
 $p_{CM}^{\mu} \equiv (E_{CM}, \mathbf{p}_{CM}), \quad p_{CM}^{2} = \left(\sum_{i} E_{i}^{CM}\right)^{2} - \left(\sum_{i} \mathbf{p}_{i}^{CM}\right)^{2} = \left(\sum_{i} E_{i}^{CM}\right)^{2} = E_{CM}^{2}$

系统的质心系总能量 *E*_{CM} 是激发粒子体系内部相互作用的有效能量
 几个粒子的总质心能也称为它们的不变质量, *m*_{inv} = *E*_{CM};由于能动量守恒,如果几个粒子是同一个母粒子的衰变产物, *m*_{inv} 就是母粒子的质量
 两个粒子碰撞时,质心系中两个入射粒子动量大小相同,方向相反;质心系中出射粒子的角度分布是轴对称的,以任一入射粒子的动量方向为轴
 标量粒子衰变所产生的次级粒子在质心系中呈球对称分布;若母粒子自旋不为零,次级粒子在质心系中则呈轴对称分布,以母粒子自旋方向为轴

固定靶实验和对撞实验

@ 固定靶实验用粒子束流轰击固定靶来发生相互作用。实验室系中,记静止 靶粒子 A 的动量为 $p_A = (m_A, \mathbf{0})$,入射粒子 B 的动量为 $p_B = (E_B, \mathbf{p}_B)$,则 $E_{CM}^2 = (p_A + p_B)^2 = p_A^2 + p_B^2 + 2p_A \cdot p_B = m_A^2 + m_B^2 + 2m_A E_B$ 💥 对撞实验用两个粒子束流相撞来发生相互作用。目前已有 e⁺e[−]、pp、pp 和 $e^{\pm}p$ 等束流不同的对撞机。设粒子 A 和 B 沿相反方向入射并对撞,若能 量远高于质量,则 $|\mathbf{p}_{\mathcal{A}}| \simeq E_{\mathcal{A}}$, $|\mathbf{p}_{\mathcal{B}}| \simeq E_{\mathcal{B}}$, $p_{\mathcal{A}}^2 \simeq p_{\mathcal{B}}^2 \simeq 0$, 在实验室系中可得 $E_{CM}^2 = p_A^2 + p_B^2 + 2p_A \cdot p_B \simeq 2E_A E_B + 2|\mathbf{p}_A||\mathbf{p}_B| \simeq 4E_A E_B$

基本相互作用

一 质心能 $E_{\rm CM} \simeq \sqrt{4E_A E_B}$

费米实验室的 Tevatron 是 $p\bar{p}$ 对撞机, $E_p = E_{\bar{p}} \simeq 1$ TeV, $E_{CM} \simeq 2$ TeV。若 改为以 p 为靶的打靶实验,需要入射 \bar{p} 能量为 $E_{\bar{p}} \simeq 2000$ TeV 才能达到相 同的质心能。由此可见,对撞实验远比固定靶实验更能有效地利用能量。

粒子运动学

宇宙线打到大气上,等价于固定靶实验

※ 极高能宇宙线能量可达 *E* ~ 10²⁰ eV,打到大气原子核上,等价于质心能 √*s* ~ 430 TeV 的 *pp* 对撞,或等价于核子质心能 √*s_{NN}* ~ 57 TeV 的铁核对撞

宇宙线与粒子物理	自然单位制	基本相互作用	粒子	粒子运动学	衰变和散射
000000	00	0000000	0000	000000	●00000
衰变					

而是一个分布,即衰变产物不变质量 m_{inv} 的分布,服从 Breit-Wigner 分布

$$f(m_{\rm inv}) = \frac{\Gamma}{2\pi} \frac{1}{(m_{\rm inv} - m)^2 + \Gamma^2/4}$$

🜗 分布的中心值 *m* 是通常所说的粒子<mark>质量</mark>,分布的半峰全宽是粒子宽度 Γ

		0000000	0000	000000	00000
宇宙线与粒子物理	自然单位制	基本相互作用	粒子	粒子运动学	衰变和散射

 $\frac{24}{34}$ 一个粒子可能有多种衰变过程。在一次衰变中,某个衰变过程 j 发生的 概率称为它的分支比 B_i 。定义衰变过程 j 的分宽度为 $\Gamma_i = \Gamma B_i$,则

$$\sum_{j}B_{j}=rac{1}{\Gamma}\sum_{j}\Gamma_{j}=1, \hspace{1em} \mbox{IP} \hspace{1em} \Gamma=\sum_{j}\Gamma_{j}$$

🔦 对于末态为 n 体的衰变过程 j,分宽度在理论计算中表达为

$$\Gamma_{j} = \frac{1}{2m} \int \prod_{i=1}^{n} \frac{d^{3}p_{i}}{(2\pi)^{3} 2E_{i}} (2\pi)^{4} \delta^{(4)} \left(p^{\mu} - \sum_{i} p_{i}^{\mu} \right) |\mathcal{M}_{j}|^{2}$$

↓ 这里 m 和 p^μ 是母粒子的质量和 4 动量, 4 维 δ 函数体现能动量守恒; 衰变过程的不变振幅 M_j 是发生 j 过程的概率振幅,在洛伦兹变换下不变

一个粒子物理理论模型会定义粒子类型和拉格朗日密度量(<mark>拉氏量</mark>),由此 给出一套<mark>费曼规则</mark>。利用这套规则可以画出<mark>费曼图</mark>来表示所有可能发生的衰 变和散射过程。根据量子场论知识,可以通过费曼图计算不变振幅。

宇宙线与粒子物理	自然单位制	基本相互作用	粒子	粒子运动学	衰变和散射
0000000	00	0000000	0000	000000	00●000
散射					

💥 散射是两个粒子通过碰撞发生反应的过程

🌗 弹性散射:碰撞粒子之间只有动量交换,类型和内部状态没有发生改变

非弹性散射: 粒子内部状态有所改变或转化为其它粒子。

一 描述散射过程本质的物理量是散射截面 σ ,它是粒子间相互作用的有效 面积,表征相互作用的强弱;常用单位是靶,记作 b,1 b = 10^{-28} m²

🔦 对于末态为 n 体的散射过程,散射截面在理论计算中表达为

$$\sigma = \frac{1}{2E_{\mathcal{A}}2E_{\mathcal{B}}|\mathbf{v}_{\mathcal{A}}-\mathbf{v}_{\mathcal{B}}|} \int \prod_{i=1}^{n} \frac{d^{3}p_{i}}{(2\pi)^{3}2E_{i}} (2\pi)^{4} \delta^{(4)} \left(p_{\mathcal{A}}^{\mu}+p_{\mathcal{B}}^{\mu}-\sum_{i} p_{i}^{\mu}\right) |\mathcal{M}|^{2}$$

↓ 与分宽度的计算公式类似,4 维 δ 函数体现能动量守恒,而 M 是散射过 程的不变振幅,可以通过费曼图计算

 设两束粒子 A 和 B 发生散射,各自含

 有 N_A 和 N_B 个粒子, A 与 B 相互作用的

 散射截面为 σ ,粒子束相互投射的区域横

 截面积为 A,则相互作用发生的次数为

$$N = N_{\mathcal{A}} N_{\mathcal{B}} \frac{\sigma}{A}$$

○ 若两个粒子束的数密度为 n_A 和 n_B , 彼此间相对速度为 $v = |v_A - v_B|$,则在 t 时间内相互投射的区域体积为 V = Avt

 \bigcirc 由于 $N_{\mathcal{A}} = n_{\mathcal{A}}V$, $N_{\mathcal{B}} = n_{\mathcal{B}}V$,单位时间单位体积内的相互作用率为

$$\mathbf{R} = \frac{N}{Vt} = \frac{1}{Vt} \frac{n_{\mathcal{A}} V n_{\mathcal{B}} V \sigma}{A} = n_{\mathcal{A}} n_{\mathcal{B}} \sigma \frac{V}{At} = n_{\mathcal{A}} n_{\mathcal{B}} \sigma v$$

Mandelstam 变量和运动学条件

💡 根据狭义相对性原理,物理定律在一切惯性参考系中具有相同形式

一 利用质心系可以方便地分析一个过程需要满足的运动学条件

 康变过程质心能为母粒子质量 m,根据能量守恒,发生衰变的运动学条 件是 $m \ge \sum_{i} m_{i}$,即一个粒子只能衰变成质量之和比它轻的末态粒子

() 对于散射过程,能量守恒要求的运动学条件是 $\sqrt{s} \ge \sum_{i} m_{i}$,即散射过程 质心能应大于末态粒子质量之和。

宇宙线与粒子物理 000000	自然単位制 00	基本相互作用 0000000	粒 子 0000	粒子运动子 000000	衰变和散射 000000●
典型衰变和	散射				
📏 典型衰变	5				ν_{μ}

- 🛟 弱衰变 $n \rightarrow pe^- \bar{\nu}_s$,中子寿命 880 s → 电磁衰变 $\pi^0 \rightarrow \gamma\gamma$, π^0 寿命 8.5 × 10⁻¹⁷ s $\stackrel{\scriptstyle{\longleftarrow}}{\leftarrow}$ 强衰变 $\Delta^+(1232) \rightarrow p\pi^0/n\pi^+$ Δ^+ 寿命 $\simeq 5.6 \times 10^{-24}$ s,宽度 $\simeq 117$ MeV 💊 典型散射 \downarrow 弱散射截面 $\sigma(\nu p \rightarrow 强子) \sim 1$ nb \bigcirc 电磁散射截面 $\sigma(\gamma\gamma \rightarrow 3$ 强子)~500 nb \bigcirc 电磁散射截面 $\sigma(\gamma p \rightarrow$ 强子) ~ 200 μb
- ightarrow 强散射截面 $\sigma(p\bar{p} \rightarrow$ 强子)~70 mb

