γ -rays & Positrons	Two-zone Diffusion	Injection & Propagation	Numerical Results	Summary	Backups
000	000	0000	000	0	0

Geminga pulsar contribution to the cosmic-ray positron excess according to the γ -ray observations

Zhao-Huan Yu (余钊焕)

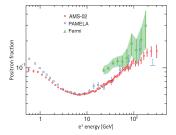
School of Physics, Sun Yat-Sen University
 https://yzhxxzxy.github.io

Based on Guang-Yao Zhou, Zhao-Huan Yu, Qiang Yuan, Hong-Hao Zhang, arXiv:2205.07038, Commun. Theor. Phys.

"AMS 实验、暗物质与基础物理前沿" 小型学术研讨会

Online, April 24, 2023

Zhao-Huan Yu (SYSU)


 γ-rays & Positrons
 Two-zone Diffusion
 Injection & Propagation
 Numerical Results
 Summary
 Backups

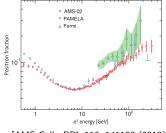
 ●OO
 000
 000
 000
 0
 0
 0

The Cosmic-ray Positron Excess

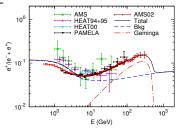
O Since 2008, measurements of cosmic-ray (CR) positrons by PAMELA, Fermi-LAT, and AMS-02 show an unexpected excess at energies $\gtrsim 10 \text{ GeV}$

Possible interpretations for this excess include annihilating or decaying dark matter as well as astrophysical sources like nearby pulsars within kpc

[AMS Coll., PRL 110, 141102 (2013)]

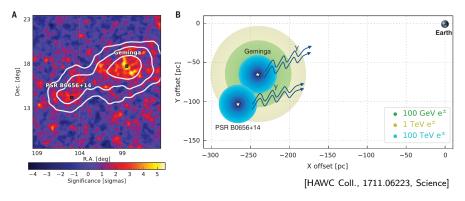


The Cosmic-ray Positron Excess


O Since 2008, measurements of cosmic-ray (CR) positrons by PAMELA, Fermi-LAT, and AMS-02 show an unexpected excess at energies $\gtrsim 10$ GeV

Possible interpretations for this excess include annihilating or decaying dark matter as well as astrophysical sources like nearby pulsars within kpc

 \bigcirc Particularly, the middle-aged pulsar Geminga with a distance of ~ 250 pc is widely assumed to produce high energy positrons that could propagate to the Earth


[PF Yin, ZHY, Q Yuan, XJ Bi, 1304.4128, PRD]

Zhao-Huan Yu (SYSU)

γ-rays & Positrons ○●○	Two-zone Diffusion	Injection & Propagation	Numerical Results	Summary O	Backups O
HAWC Obs	servations of	f 10 TeV γ -rays	S		

In 2017, the High-Altitude Water Cherenkov Observatory (HAWC) observed $\sim 10 \text{ TeV } \gamma$ rays spatially extended about 2 degrees around Geminga, which would be produced by positrons and electrons of energies $\sim 100 \text{ TeV}$ via inverse Compton scattering (ICS) off low energy photons

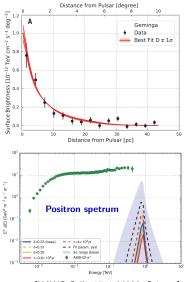
This confirms Geminga as a source of high energy positrons and electrons

Geminga pulsar, CR e^+ , and γ -rays

April 2023

3 / 16

Zhao-Huan Yu (SYSU)


 γ -rays & Positrons Two-zone Diffusion Backups Numerical Results Summarv 000

Slow Diffusion of Electrons and Positrons

 $\delta =$ However, the γ -ray surface brightness profile (SBP) around Geminga measured by HAWC implies a diffusion coefficient smaller than the normal value by at least 2 orders of magnitude

Diffusion coefficient
$$D(E) = D_{100} \left(\frac{E}{100 \text{ TeV}}\right)^{\delta}$$

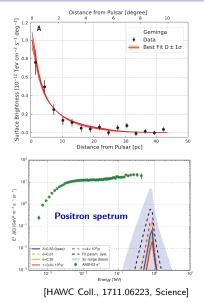
 $\delta = \frac{1}{3}, \quad D_{100} = 3.2^{+1.4}_{-1.0} \times 10^{27} \text{ cm}^2/\text{s}$

Such slow diffusion implies much less CR positrons arriving at the Earth, unlikely to explain the positron excess

[HAWC Coll., 1711.06223, Science] April 2023

4 / 16

γ-rays & Positrons Two-zone Diffusion Injection & Propagation Numerical Results Summary Backups OC● 000 000 000 000 000 0 OCO 0


Slow Diffusion of Electrons and Positrons

 $\overleftarrow{\infty}$ However, the γ -ray surface brightness profile (SBP) around Geminga measured by HAWC implies a diffusion coefficient smaller than the normal value by at least 2 orders of magnitude

Diffusion coefficient
$$D(E) = D_{100} \left(\frac{E}{100 \text{ TeV}}\right)^{\delta}$$

 $\delta = \frac{1}{3}, \quad D_{100} = 3.2^{+1.4}_{-1.0} \times 10^{27} \text{ cm}^2/\text{s}$

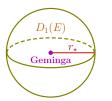
Such slow diffusion implies much less CR positrons arriving at the Earth, unlikely to explain the positron excess

 \checkmark The observation of another extended γ-ray halo around the pulsar J0621+3749 by LHAASO further established the general conclusion of slow diffusion around pulsars [LHAASO Coll., 2106.09396, PRL]

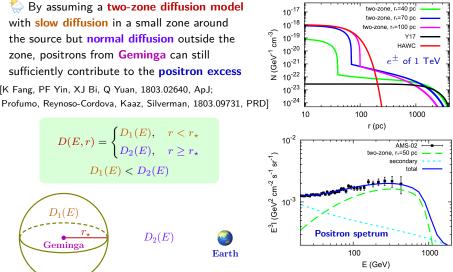
April 2023

4 / 16

Zhao-Huan Yu (SYSU)


γ -rays & Positrons	Two-zone Diffusion	Injection & Propagation	Numerical Results	Summary O	Backups O
T					

Iwo-zone Diffusion


Sy assuming a two-zone diffusion model with slow diffusion in a small zone around the source but normal diffusion outside the zone, positrons from Geminga can still sufficiently contribute to the positron excess [K Fang, PF Yin, XJ Bi, Q Yuan, 1803.02640, ApJ;

> $D(E,r) = \begin{cases} D_1(E), & r < r_\star \\ D_2(E), & r \ge r_\star \end{cases}$ $D_1(E) < D_2(E)$

> > $D_2(E)$

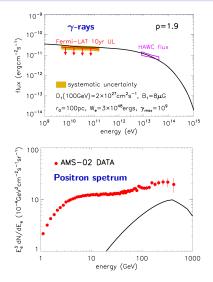
Zhao-Huan Yu (SYSU)

[1803.02640, ApJ]

Geminga pulsar, CR e^+ , and γ -rays

Earth

April 2023 5 / 16
 γ-rays & Positrons
 Two-zone Diffusion
 Injection & Propagation
 Numerical Results
 Summary
 Backups


 000
 0●0
 0000
 000
 0
 0

Fermi-LAT γ -rays: Analysis by Xi et al.

Solution Section Sect

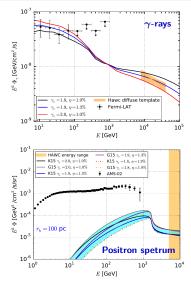
P Based on two-zone diffusion templates, an analysis of 10-yr Fermi-LAT γ -ray data by Xi et al. (denoted as X19) did not find such extended emission and derive 95% C.L. upper limits on the γ -ray flux in $\sim 5-100$ GeV

Combined with the HAWC data, e^{\pm} from Geminga with a single power-law injection spectrum can only contribute a small faction to the AMS-02 positron spectrum

[SQ Xi, RY Liu, ZQ Huang, K Fang, XY Wang, 1810.10928, ApJ (2019)]

Zhao-Huan Yu (SYSU)

 γ-rays & Positrons
 Two-zone Diffusion
 Injection & Propagation
 Numerical Results
 Summary
 Backups


 000
 000
 000
 000
 0
 0

Fermi-LAT γ -rays: Analysis by Di Mauro et al.

 \bigcirc Taking into account both a larger region of interest and the proper motion of the Geminga pulsar, another analysis of Fermi-LAT data by Di Mauro et al. (denoted as D19) claimed a discovery of extended γ -ray emissions around Geminga in the energy range of $\sim 10-100$ GeV

The derived γ -ray flux is higher than the X19 upper limits by a factor of ~ 3

Considering both the D19 γ -ray flux and the HAWC data, the Geminga contribution to the position flux they obtained is not enough for the AMS-02 excess assuming a conversion efficiency $\eta \sim 1-2\%$ for the pulsar spin-down energy converted to e^{\pm} energies

[Di Mauro, Manconi, Donato, 1903.05647, PRD]

Zhao-Huan Yu (SYSU)

γ -rays & Positrons	Two-zone Diffusion	Injection & Propagation ●○○○	Numerical Results	Summary O	Backups O
Low Energy	y Cutoff				

I Both the X19 and D19 analyses assumed a single power-law Geminga e^{\pm} injection spectrum with a spectral index γ and a high energy cutoff $E_{\rm hc}$:

$$Q \propto E^{-\gamma} \exp\left(-rac{E}{E_{
m hc}}
ight)$$

The inconsistency with the AMS-02 data may indicate that there are less low energy positrons and electrons producing GeV γ rays

In order to simultaneously explain the HAWC, Fermi-LAT, and AMS-02 data, we attempt to modify the injection spectrum by adding a low energy cutoff E_{lc} :

$$Q \propto E^{-\gamma} \exp\left(-rac{E}{E_{
m hc}}
ight) \exp\left(-rac{E_{
m lc}}{E}
ight)$$

Zhao-Huan Yu (SYSU)

Geminga pulsar, CR e^+ , and γ -rays

April 2023

8 / 16

γ-rays & Positrons	Two-zone Diffusion	Injection & Propagation ○●○○	Numerical Results	Summary O	Backups O			
Propagation Equation for CR e^\pm								

 ${
m }$ The diffusion-cooling propagation equation for CR e^{\pm} :

$$\frac{\partial N}{\partial t} - \nabla \cdot (D\nabla N) - \frac{\partial}{\partial E}(bN) = Q$$

 $\stackrel{\text{\tiny V}}{\cong} N$ is the e^{\pm} differential number density, and E is the e^{\pm} energy $\stackrel{\text{\tiny V}}{=} D$ is the diffusion coefficient in the two-zone diffusion model $\stackrel{\text{\tiny V}}{=}$ The energy loss rate b is contributed by synchrotron radiation and ICS

γ-rays & Positrons	Two-zone Diffusion	Injection & Propagation ○●○○	Numerical Results	Summary O	Backups O
Propagatio	n Equation	for CR e^\pm			

 $\frac{2}{3}$ The diffusion-cooling propagation equation for CR e^{\pm} :

Zhao-Huan Yu (SYSU)

$$\frac{\partial N}{\partial t} - \nabla \cdot (\mathbf{D}\nabla N) - \frac{\partial}{\partial E}(bN) = \mathbf{Q}$$

 $\bigotimes N$ is the e^{\pm} differential number density, and E is the e^{\pm} energy \mathbf{V} D is the diffusion coefficient in the two-zone diffusion model \P The energy loss rate b is contributed by synchrotron radiation and ICS The source term for high energy e^{\pm} injected by Geminga is

$$Q(t, E, r) = q(t, E)\delta(r), \quad q(t, E) = q_0 \left(1 + \frac{t}{\tau}\right)^{-2} E^{-\gamma} \exp\left(-\frac{E}{E_{\rm hc}}\right) \exp\left(-\frac{E_{\rm lc}}{E}\right)$$

ightarrow 12~ kyr is the characteristic initial spin-down time scale of Geminga $\oint q_0$ is determined by $\int q(t_{
m s},E)\,E\,{
m d}E=\eta\dot{E}_{
m s}$, where η is the conversion efficiency **W** Geminga age $t_{
m s}\simeq 342$ kyr, spin-down luminosity $\dot{E}_{
m s}\simeq 3.2 imes 10^{34}$ erg s $^{-1}$ Geminga pulsar, CR e^+ , and γ -rays

April 2023

9 / 16

γ-rays & Posit	trons Two-zone Diffusion	Injection & Propagation ○○●○	Numerical Results	Summary O	Backups O
Photo	n Emissivity				

D The photon emissivity due to e^\pm ICS based on the Klein-Nishina cross section is

$$Q_{\rm ICS}(t, E_{\gamma}, r) = 4\pi \sum_{j} \int_{0}^{\infty} \mathrm{d}\epsilon \, n_{j}(\epsilon) \int_{E_{\rm min}}^{E_{\rm max}} \mathrm{d}E \, J(t, E, r) F(\epsilon, E, E_{\gamma})$$

 $\mathcal{R} n_j(\epsilon) = \frac{15U_j}{(\pi kT_j)^4} \frac{\epsilon^2}{\exp(\epsilon/kT_j) - 1}$ is the photon number density of a background

field j with energy ϵ_{i} temperature $T_j,$ energy density $U_j,$ and Boltzmann constant k

$$\swarrow J(t,E,r) = rac{v_e N(t,E,r)}{4\pi}$$
 is the e^{\pm} intensity with e^{\pm} speed v_e

$$F(\epsilon, E, E_{\gamma}) = \frac{3\sigma_{\mathrm{T}}}{4\gamma_e^2 \epsilon} \left[2q \ln q + (1+2q)(1-q) + \frac{\Gamma^2 q^2(1-q)}{2(1+\Gamma q)} \right]$$
$$\Gamma = \frac{4\epsilon\gamma_e}{m_e c^2}, \quad q = \frac{E_{\gamma}}{\Gamma(E_e - E_{\gamma})}$$

 \supset $\sigma_{
m T}$ is the Thomson cross section, and $\gamma_e=rac{E}{m_ec^2}$ is the Lorentz factor of e^\pm

Zhao-Huan Yu (SYSU)

γ-rays & Positrons	Two-zone Diffusion	Injection & Propagation 000●	on Numerical Results	Summary O	Backups
•					
🐸 We conside	r three backgro	ound photon	Component $j T_i$ (K)	U_i (eV/cm	n^3)

components for the ICS processes, including the CMB, the IR background, and the optical background

$\textbf{Component} \ j$	T_j (K)	$U_j \; ({ m eV/cm}^3)$
CMB	2.7	0.26
IR	20	0.3
Optical	5000	0.3

The synchrotron energy loss rate due to a magnetic field B in the interstellar medium is given by $b_{\text{syn}} = \frac{\sigma_{\text{T}} \gamma_e^2 B^2}{6\pi m_e c}$, while the energy loss rate due to ICS is estimated following XP Tang & Piran, 1808.02445, MNRAS

γ -rays & Positrons	Two-zone Diffusion	Injection & Propagation ○○○●	Numerical Results	Summary O	Backups O
γ -ray Ener	gy Spectrun	n and SBP			

We consider three background photon components for the ICS processes, including the CMB, the IR background, and the optical background

Component j	T_j (K)	U_j (eV/cm ³)
CMB	2.7	0.26
IR	20	0.3
Optical	5000	0.3

W The synchrotron energy loss rate due to a magnetic field B in the interstellar $\sigma_{\rm T} \gamma_a^2 B^2$

medium is given by $b_{\text{syn}} = \frac{\sigma_{\text{T}} \gamma_e^2 B^2}{6\pi m_e c}$, while the **energy loss rate** due to **ICS** is estimated following XP Tang & Piran, 1808.02445, MNRAS

Integrating $Q_{\text{ICS}}(t_s, E_{\gamma}, r)$ along the **light of sight**, we obtain the γ -ray flux for specific energy E_{γ} and angular separation θ as

$$I(E_{\gamma}, \theta) = \frac{1}{4\pi} \int_{l_{\min}}^{l_{\max}} \mathrm{d}l \, Q_{\mathrm{ICS}}(t_s, E_{\gamma}, r)$$

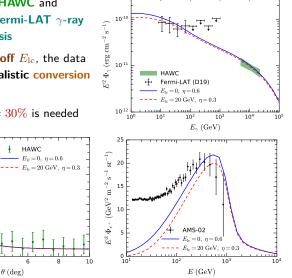
 \clubsuit Integrate out heta $<\hspace{-0.4em}=$ $<\hspace{-0.4em} \gamma$ -ray energy spectrum Φ_γ

Sourse Jana

11 / 16

April 2023

Numerical Result according to the D19 γ -ray Observation


HAWC

 θ (deg)

Eirst, we try to interpret the **HAWC** and AMS-02 data according to the Fermi-LAT γ -ray observation from the D19 analysis

 \bigcirc Without the low energy cutoff E_{lc} , the data can be explained by a quite unrealistic conversion efficiency $\eta = 60\%$

$${igwedge} With \; E_{
m lc} = 20 \; {\sf GeV}, \; {\sf only} \; \eta = 30\%$$
 is needed

Zhao-Huan Yu (SYSU)

SBP $(10^{-12} \text{ erg cm}^{-2} \text{ s}^{-1} \text{ deg}^{-2})$

1.2

1.0

0.8

0.6

0.4 0.2

0.0

n

 $r_{\star} = 50 \; {\rm pc}$

 $\times 10^{27} \text{ cm}^2 \text{ s}^{-1}$

 $\times 10^{30} \text{ cm}^2 \text{ s}^{-1}$

 $B = 3 \ \mu G$

 $\gamma = 2.2$

 $D_{100}^{r < r_{\star}} = 3.5$

 $D_{100}^{r \ge r_{\star}} = 1.7$

γ-rays & Positrons	Two-zone Diffusion	Injection & Propagation	Numerical Results	Summary O	Backups O
	• · · · · · · · · ·	1. I. V10		. • •	

Parameter Scan according to the X19 γ -ray Constraint

Second, we attempt to explain the HAWC and AMS-02 data according to the Fermi-LAT γ -ray constraint from the X19 analysis

We treat γ , $E_{\rm hc}$, $E_{\rm lc}$, η , B, and $D_{100}^{r < r_{\star}}$ as free parameters and perform a scan in the parameter space with fixed r_{\star} and $D_{100}^{r \ge r_{\star}} = 1.7 \times 10^{30} \text{ cm}^2 \text{ s}^{-1}$

The MultiNest algorithm is utilized to improve the fitting efficiency

m The best results are obtained as

r_{\star} (pc)	50	70	100
γ	2.10	1.93	1.70
$E_{ m hc}$ (TeV)	520	537	463
$E_{ m lc}$ (GeV)	870	302	547
η	15%	21%	16%
<i>Β</i> (μG)	5.0	6.9	7.2
$D_{100}^{r < r_{\star}} \ (10^{27} \ { m cm}^2 { m s}^{-1})$	4.8	7.8	8.5

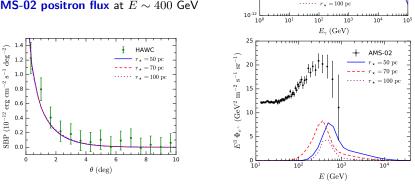
Zhao-Huan Yu (SYSU)

10-10

10-11

HAWC Fermi-LAT (X19)

 $r_{\star} = 50 \text{ pc}$ $r_{\star} = 70 \text{ pc}$


April 2023

14 / 16

 $E^2 \Phi_{\gamma} (erg cm^{-2} s^{-1})$

Best Results according to the X19 γ -ray Constraint

% While the **HAWC** data are properly fitted and the γ -ray flux in 5 GeV $\lesssim E_{\gamma} \lesssim 100$ GeV lies below the **X19 upper limits**, we find that **Geminga** can only supply less than 50% of the **AMS-02 positron flux** at $E \sim 400$ GeV

Zhao-Huan Yu (SYSU)

γ -rays & Positrons	Two-zone Diffusion	Injection & Propagation	Numerical Results	Summary •	Backups O
Summary					

- We attempt to interpret the AMS-02 CR positron excess by injection from the nearby pulsar Geminga, assuming a two-zone diffusion scenario and an injection spectrum with a low energy cutoff
- Since the high energy positrons and electrons from Geminga can induce γ rays via ICS, we take into account the extended γ-ray observations around Geminga from HAWC for ~ 10 TeV and from Fermi-LAT for O(1)-O(100) GeV
- According to the extended γ-ray observation claimed by the D19 analysis of Fermi-LAT data, we find that Geminga could explain the positron excess for a 30% energy conversion efficiency into positrons and electrons
- However, based on the constraint on extended γ rays from the X19 analysis, positrons from Geminga would be insufficient to account for the positron excess
- A further robust analysis of Fermi-LAT data for the extended γ rays would be crucial to determine whether Geminga can explain the positron excess or not

γ -rays & Positrons	Two-zone Diffusion	Injection & Propagation	Numerical Results	Summary ●	Backups O
Summary					

- We attempt to interpret the AMS-02 CR positron excess by injection from the nearby pulsar Geminga, assuming a two-zone diffusion scenario and an injection spectrum with a low energy cutoff
- Since the high energy positrons and electrons from Geminga can induce γ rays via ICS, we take into account the extended γ -ray observations around Geminga from HAWC for ~ 10 TeV and from Fermi-LAT for $\mathcal{O}(1)-\mathcal{O}(100)$ GeV
- According to the extended γ-ray observation claimed by the D19 analysis of Fermi-LAT data, we find that Geminga could explain the positron excess for a 30% energy conversion efficiency into positrons and electrons
- However, based on the constraint on extended γ rays from the X19 analysis, positrons from Geminga would be insufficient to account for the positron excess
- A further robust analysis of Fermi-LAT data for the extended γ rays would be crucial to determine whether Geminga can explain the positron excess or not

Thanks for your attention!

Geminga pulsar, CR e^+ , and γ -rays

Zhao-Huan Yu (SYSU)

γ -rays & Positrons	Two-zone Diffusion	Injection & Propagation	Numerical Results	Summary O	Backups •
Further Ex	planation				

We our results show that the X19 constraint favors $\gamma < 2$, $\eta \lesssim 21\%$, and $E_{\rm lc}$ of several hundred GeV, which suppress the γ -ray flux at $\sim O(10)$ GeV

According to an approximate relation

$$E_{m{\gamma}}=20\left(rac{E}{100~{
m TeV}}
ight)^2{
m TeV}$$

for e^{\pm} ICS off CMB photons, $\mathcal{O}(10)$ GeV γ rays are induced by $\mathcal{O}(\text{TeV})$ e^{\pm}

A Thus, the X19 constraint implies less $\mathcal{O}(\text{TeV})$ positrons and electrons from Geminga, resulting in a lower CR positron flux for $E \sim \mathcal{O}(100)$ GeV at the Earth, which is insufficient to explain the AMS-02 excess

Zhao-Huan Yu (SYSU)

Geminga pulsar, CR e^+ , and γ -rays

April 2023

16 / 16