Dark Matter with Hidden U(1) Gauge Interaction and Kinetic Mixing

Zhao-Huan Yu (余钊焕)

School of Physics, Sun Yat-Sen University

Based on Juebin Lao, Chengfeng Cai, Zhao-Huan Yu, Yu-Pan Zeng, and Hong-Hao Zhang, 2003.02516, PRD

Workshop on High Energy Physics in Guangzhou Sun Yat-Sen University, Guangzhou December 13, 2020

Portals for Dark Matter Interactions

Thermal production mechanism

Dark matter (DM) is conventionally assumed to be thermally produced in the early Universe

Some mediators (**"portals"**) are typically required to induce adequate DM interactions with standard model (SM) particles

 \uparrow The simplest attempt is to introduce an additional U(1)_x gauge symmetry, whose gauge boson mediates the interactions between DM and SM particles

Motivation	Hidden U(1) gauge theory	Dirac fermionic DM	Complex scalar DM	Conclusions O
Hidden	U(1) _x Gauge Inte	raction		
抉 Assu	me all SM fields do no	t carry any U(1) _X c	harges	

Minimize the impact on the interactions of SM particles
[Feldman, Liu, Nath, hep-ph/0702123, PRD; Pospelov, Ritz, Voloshin, 0711.4866, PLB; Mambrini, 1006.3318, JCAP; Chun, Park, Scopel, 1011.3300, JHEP; Liu, Wang, Yu, 1704.00730, JHEP; ...]

Such a U(1)_x gauge interaction belongs to a hidden sector

 \mathbb{N} Assume dark matter carries $U(1)_X$ charge

 \mathbb{N} Mass of the U(1)_x gauge boson can be generated by

Gauge invariance allows a renormalizable kinetic mixing term between the $U(1)_X$ and $U(1)_Y$ field strengths [Holdom, PLB 259, 329 (1991)]

A portal connecting DM and SM particles

Motivation	Hidden U(1) gauge theory ●○○○○○○○○	Dirac fermionic DM	Complex scalar DM	Conclusions O
Kinetic N	Aixing			

 \mathcal{G} For the U(1)_Y and U(1)_X gauge fields \hat{B}_{μ} and \hat{Z}'_{μ} , the gauge invariant kinetic terms in the Lagrangian reads

$$\mathcal{L}_{\rm K} = -\frac{1}{4} \hat{B}^{\mu\nu} \hat{B}_{\mu\nu} - \frac{1}{4} \hat{Z}^{\prime\mu\nu} \hat{Z}^{\prime}_{\mu\nu} - \frac{s_{\epsilon}}{2} \hat{B}^{\mu\nu} \hat{Z}^{\prime}_{\mu\nu} = -\frac{1}{4} \begin{pmatrix} \hat{B}^{\mu\nu}, & \hat{Z}^{\prime\mu\nu} \end{pmatrix} \begin{pmatrix} 1 & s_{\epsilon} \\ s_{\epsilon} & 1 \end{pmatrix} \begin{pmatrix} \hat{B}_{\mu\nu} \\ \hat{Z}^{\prime}_{\mu\nu} \end{pmatrix}$$

) Field strengths $\hat{B}_{\mu\nu} \equiv \partial_{\mu}\hat{B}_{\nu} - \partial_{\nu}\hat{B}_{\mu}$ and $\hat{Z}'_{\mu\nu} \equiv \partial_{\mu}\hat{Z}'_{\nu} - \partial_{\nu}\hat{Z}'_{\mu}$

The kinetic mixing term is parametrized by $s_{\varepsilon} \in (-1, 1)$, beyond which the canonical kinetic terms have wrong signs

Introduce
$$\varepsilon \in (-\pi/2, \pi/2)$$
 to express $s_{\varepsilon} = \sin \epsilon$

 \mathcal{L}_K can be made canonical via a $GL(2,\mathbb{R})$ transformation

$$\begin{pmatrix} \hat{B}_{\mu} \\ \hat{Z}'_{\mu} \end{pmatrix} = V_{\mathrm{K}} \begin{pmatrix} B_{\mu} \\ \tilde{Z}'_{\mu} \end{pmatrix}, \quad V_{\mathrm{K}} \equiv \begin{pmatrix} 1 & -t_{\varepsilon} \\ 0 & 1/c_{\varepsilon} \end{pmatrix}, \quad t_{\varepsilon} \equiv \tan \varepsilon$$

$$V_{\mathrm{K}}^{\mathrm{T}} \begin{pmatrix} 1 & s_{\varepsilon} \\ s_{\varepsilon} & 1 \end{pmatrix} V_{\mathrm{K}} = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \quad \pounds \quad \mathcal{L}_{\mathrm{K}} = -\frac{1}{4} B^{\mu\nu} B_{\mu\nu} - \frac{1}{4} \tilde{Z}'^{\mu\nu} \tilde{Z}'_{\mu\nu}$$

Â

ε

В

We assume that the U(1)_X gauge symmetry is **spontaneously broken** by a hidden Higgs field \hat{S} with U(1)_X charge $q_S = 1$

 \Re SU(2)_L × U(1)_Y × U(1)_X gauge invariant Lagrangian

$$\begin{split} \mathcal{L}_{\rm H} &= (D^{\mu}\hat{H})^{\dagger}(D_{\mu}\hat{H}) + (D^{\mu}\hat{S})^{\dagger}(D_{\mu}\hat{S}) + \mu^{2}|\hat{H}|^{2} + \mu_{S}^{2}|\hat{S}|^{2} \\ &- \frac{1}{2}\lambda_{H}|\hat{H}|^{4} - \frac{1}{2}\lambda_{S}|\hat{S}|^{4} - \lambda_{HS}|\hat{H}|^{2}|\hat{S}|^{2} \end{split}$$

 $\hat{H} \text{ is the SM Higgs doublet with } D_{\mu}\hat{H} = (\partial_{\mu} - i\hat{g}W_{\mu}^{a}\sigma^{a}/2 - i\hat{g}'\hat{B}_{\mu}/2)\hat{H}$ $\hat{S} \text{ satisfies } D_{\mu}\hat{S} = (\partial_{\mu} - ig_{X}\hat{Z}'_{\mu})\hat{S}, \text{ where } g_{X} \text{ is the } U(1)_{X} \text{ gauge coupling}$ $\hat{B} \text{ If } \mu^{2} > 0, \ \mu_{S}^{2} > 0, \ \lambda_{H} > 0, \ \lambda_{S} > 0, \text{ and } |\lambda_{HS}| < \sqrt{\lambda_{H}\lambda_{S}}$ $\hat{H} \text{ and } \hat{S} \text{ acquire nonzero vacuum expectation values (VEVs) } \nu \text{ and } \nu_{S}$

 \checkmark Spontaneous breaking of the SU(2)_L × U(1)_Y × U(1)_X gauge symmetry

Zhao-Huan Yu (SYSU)

 Motivation
 Hidden U(1) gauge theory
 Dirac fermionic DM
 Complex scalar DM
 Conclusions

 ○○
 ○○
 ○○
 ○○
 ○○
 ○○

 Higgs Boson Mixing and Masses

 $rac{1}{3}$ In the unitary gauge, the Higgs field can be expressed as

$$\hat{H} = \frac{1}{\sqrt{2}} \begin{pmatrix} 0\\ v+H \end{pmatrix}, \quad \hat{S} = \frac{1}{\sqrt{2}} (v_S + S)$$

Mass-squared matrix for Higgs bosons (H,S): $\mathcal{M}_0^2 = \begin{pmatrix} \lambda_H v^2 & \lambda_{HS} v v_S \\ \lambda_{HS} v v_S & \lambda_S v_S^2 \end{pmatrix}$

Diagonalization by a rotation with an angle $\eta \in [-\pi/4, \pi/4]$

$$\begin{pmatrix} H\\ S \end{pmatrix} = \begin{pmatrix} c_{\eta} & -s_{\eta}\\ s_{\eta} & c_{\eta} \end{pmatrix} \begin{pmatrix} h\\ s \end{pmatrix}, \quad \tan 2\eta = \frac{2\lambda_{HS}\nu\nu_{S}}{\lambda_{H}\nu^{2} - \lambda_{S}\nu_{S}^{2}}$$

Masses squared for the mass eigenstates (h,s)

$$m_h^2 = \frac{1}{2} \left[\lambda_H v^2 + \lambda_S v_S^2 + (\lambda_H v^2 - \lambda_S v_S^2)/c_{2\eta} \right]$$
$$m_s^2 = \frac{1}{2} \left[\lambda_H v^2 + \lambda_S v_S^2 + (\lambda_S v_S^2 - \lambda_H v^2)/c_{2\eta} \right]$$

H h s s

h should be the 125 GeV SM-like Higgs boson

Motivation	Hidden U(1) gauge theory 000●00000	Dirac fermionic DM	Complex scalar DM	Conclusions O
Gauge E	Boson Masses			

 \Im Mass-squared matrix for $(\hat{B}_{\mu}, W^3_{\mu}, \hat{Z}'_{\mu})$ generated by the Higgs VEVs u and u_s

$$M_1^2 = \begin{pmatrix} \hat{g}'^2 v^2 / 4 & -\hat{g} \hat{g}' v^2 / 4 \\ -\hat{g} \hat{g}' v^2 / 4 & \hat{g}^2 v^2 / 4 \\ & g_X^2 v_S^2 \end{pmatrix}, \quad W^{\pm} \text{ boson mass } m_W = \frac{1}{2} \hat{g} v$$

Taking into account the **kinetic mixing** s_{ε} and the diagonalization of the mass-squared matrix, the **photon** γ remain **massless**, while the masses of the *Z* **boson** and a new **massive neutral vector boson** *Z'* are given by

$$m_Z^2 = \hat{m}_Z^2 (1 + \hat{s}_W t_\varepsilon t_\xi), \quad m_{Z'}^2 = \frac{\hat{m}_{Z'}^2}{c_\varepsilon^2 (1 + \hat{s}_W t_\varepsilon t_\xi)}$$

Direct contributions from the VEVs: $\hat{m}_Z^2 \equiv (\hat{g}^2 + \hat{g}'^2)v^2/4$, $\hat{m}_{Z'}^2 \equiv g_X^2 v_S^2$

Weak mixing angle
$$\hat{\theta}_W$$
 satisfies $\hat{s}_W \equiv \sin \hat{\theta}_W = \frac{\hat{g}'}{\sqrt{\hat{g}^2 + \hat{g}'^2}}, \quad \hat{c}_W \equiv \cos \hat{\theta}_W$

Rotation angle ξ is given by $\tan 2\xi = \frac{s_{2\varepsilon}\hat{s}_W v^2(\hat{g}^2 + \hat{g}'^2)}{c_{\varepsilon}^2 v^2(\hat{g}^2 + \hat{g}'^2)(1 - \hat{s}_W^2 t_{\varepsilon}^2) - 4g_X^2 v_S^2}$

mixing

Complex scalar DM Motivation Hidden U(1) gauge theory Dirac fermionic DM Conclusions 000000000 Electroweak (EW) Current Interactions At tree level, the charge current interactions of SM fermions are not affected by the kinetic mixing, remaining a form of $\mathcal{L}_{CC} = \frac{1}{\sqrt{2}} (W_{\mu}^{+} J_{W}^{+,\mu} + \text{H.c.}), \quad J_{W}^{+,\mu} = \hat{g} (\bar{u}_{iL} \gamma^{\mu} V_{ij} d_{jL} + \bar{\nu}_{iL} \gamma^{\mu} \ell_{iL})$ \checkmark v is still directly related to the Fermi constant $G_{\rm F} = \frac{\hat{g}^2}{4\sqrt{2}m^2} = \frac{1}{\sqrt{2}v^2}$ **Veutral current interactions** become $\mathcal{L}_{NC} = j_{EM}^{\mu}A_{\mu} + j_{Z}^{\mu}Z_{\mu} + j_{Z'}^{\mu}Z'_{\mu}$ O Electromagnetic current $j^{\mu}_{\rm EM} = \sum_{a} Q_f e \bar{f} \gamma^{\mu} f$ with $e = \hat{g} \hat{g}' / \sqrt{\hat{g}^2 + \hat{g}'^2}$ $I \quad Z \quad \text{current} \quad j_Z^{\mu} = \frac{ec_{\xi}(1+\hat{s}_W t_{\varepsilon} t_{\xi})}{2\hat{s}_W \hat{c}_W} \sum_{\varepsilon} \bar{f} \gamma^{\mu} (T_f^3 - 2Q_f s_*^2 - T_f^3 \gamma_5) f + \frac{s_{\xi}}{c_{\varepsilon}} j_{\text{DM}}^{\mu}$

Dark matter U(1)_X current $j_{\text{DM}}^{\mu} \propto g_X$, $s_*^2 \equiv \hat{s}_W^2 + \hat{c}_W^2 \frac{\hat{s}_W t_{\varepsilon} t_{\xi}}{1 + \hat{s}_W t_{\varepsilon} t_{\xi}}$

Zhao-Huan Yu (SYSU)

Motivation 00	Hidden U(1) gauge theory 0000000000	Dirac fermionic DM	Complex scalar DM	Conclusions O
Independe	nt Parameters			

N In the **SM**, the weak mixing angle obeys $s_W^2 c_W^2 = \frac{\pi \alpha}{\sqrt{2}G_F m_Z^2}$ at tree level \Im Use this relation to define a "**physical**" weak mixing angle θ_W via the best measured parameters α , G_F , and m_Z [Burgess *et al.*, hep-ph/9312291, PRD]

⁹ Similar relation in the hidden U(1)_X gauge theory: $\hat{s}_{W}^{2}\hat{c}_{W}^{2} = \frac{\pi \alpha}{\sqrt{2}G_{v}\hat{m}_{z}^{2}}$

$$\hat{s}_{W}\hat{c}_{W}\hat{m}_{Z} = s_{W}c_{W}m_{Z} \quad \text{(for equation of constraints)} \\ s_{W}\hat{c}_{W}\hat{m}_{Z} = s_{W}c_{W}m_{Z} \quad \text{(for equation of constraints)} \\ s_{W}\hat{c}_{W}\hat{m}_{Z} = s_{W}c_{W}m_{Z} \quad \text{(for equation of constraints)} \\ s_{W}\hat{c}_{W}\hat{m}_{Z} = s_{W}c_{W}m_{Z} \quad \text{(for equation of constraints)} \\ s_{W}\hat{c}_{W}\hat{m}_{Z} = s_{W}c_{W}m_{Z} \quad \text{(for equation of constraints)} \\ s_{W}\hat{c}_{W}\hat{m}_{Z} = s_{W}c_{W}m_{Z} \quad \text{(for equation of constraints)} \\ s_{W}\hat{c}_{W}\hat{m}_{Z} = s_{W}c_{W}m_{Z} \quad \text{(for equation of constraints)} \\ s_{W}\hat{c}_{W}\hat{m}_{Z} = s_{W}c_{W}m_{Z} \quad \text{(for equation of constraints)} \\ s_{W}\hat{c}_{W}\hat{m}_{Z} = s_{W}\hat{c}_{W}\hat{m}_{Z} \quad \text{(for equation of constraints)} \\ s_{W}\hat{c}_{W}\hat{m}_{Z} = s_{W}\hat{c}_{W}\hat{m}_{Z} \quad \text{(for equation of constraints)} \\ s_{W}\hat{c}_{W}\hat{m}_{Z} = s_{W}\hat{c}_{W}\hat{m}_{Z} \quad \text{(for equation of constraints)} \\ s_{W}\hat{m}_{Z} \quad \text{(for equation of constraints)} \\ s_{W}\hat{m}_{Z}$$

() Utilizing these relations, we obtain \hat{s}_{W} and t_{ξ} as functions of $s_{arepsilon}$ and $m_{Z'}$

Independent parameters can be chosen as $\{g_X, m_{Z'}, m_s, s_{\varepsilon}, s_{\eta}\}$

W gauge couplings
$$\hat{g} = \frac{e}{\hat{s}_W}$$
 and $\hat{g}' = \frac{e}{\hat{c}_W}$ with $e = \sqrt{4\pi\alpha}$

 Motivation
 Hidden U(1) gauge theory
 Dirac fermionic DM
 Complex scalar DM
 Conclusions

 000
 0000
 0000
 0000
 0000
 0
 0

Electroweak Oblique Parameters

Kinetic mixing s_e modifies **EW oblique parameters** S and T at tree level **In the effective Lagrangian formulation**, Zff neutral current interactions can be expressed as [Burgess *et al.*, hep-ph/9312291, PRD]

$$\mathcal{L}_{Zff} = \frac{e}{2s_{W}c_{W}} \left(1 + \frac{\alpha T}{2}\right) Z_{\mu} \sum_{f} \bar{f} \gamma^{\mu} (T_{f}^{3} - 2Q_{f}s_{*}^{2} - T_{f}^{3}\gamma_{5}) f$$

$$s_{*}^{2} = s_{W}^{2} + \frac{1}{c_{W}^{2} - s_{W}^{2}} \left(\frac{\alpha S}{4} - s_{W}^{2}c_{W}^{2}\alpha T\right)$$

$$\overset{0.15}{\longrightarrow} \frac{Current}{--CEPC} \times \frac{c}{CEPC}$$

$$s_{W}^{2} = s_{W}^{2} + \frac{1}{c_{W}^{2} - s_{W}^{2}} \left(\frac{\alpha S}{4} - s_{W}^{2}c_{W}^{2}\alpha T\right)$$

$$\overset{0.15}{\longrightarrow} \frac{c}{--FCC-ee} \times \frac{c}{--FCC-ee}$$

$$s_{W}^{2} = 10 \text{ GeV}$$

Zhao-Huan Yu (SYSU)

Zhao-Huan Yu (SYSU)

				O			
Dirac Fermionic Dark Matter							

 \mathbb{Y} Assume the DM particle is a **Dirac fermion** χ with U(1)_X charge q_{χ}

$$\bigvee \text{ Related Lagrangian } \mathcal{L}_{\chi} = i \bar{\chi} \gamma^{\mu} D_{\mu} \chi - m_{\chi} \bar{\chi} \chi, \quad D_{\mu} \chi = (\partial_{\mu} - i q_{\chi} g_X \hat{Z}'_{\mu}) \chi$$

rightarrow DM neutral current $j^{\mu}_{\rm DM} = q_{\chi} g_X \bar{\chi} \gamma^{\mu} \chi$

Based on the kinetic mixing portal, χ particles can communicate with SM fermions through the mediation of Z and Z' bosons

In the zero momentum transfer limit $k^2 \rightarrow 0$, interactions between χ and quarks q = d, u, s, c, b, t can be described by an effective Lagrangian

$$\mathcal{L}_{\chi q} = \sum_{q} G_{\chi q}^{V} \bar{\chi} \gamma^{\mu} \chi \bar{q} \gamma_{\mu} q, \quad G_{\chi q}^{V} = -\frac{q_{\chi} g_{\chi}}{c_{\varepsilon}} \left(\frac{s_{\xi} g_{Z}^{q}}{m_{Z}^{2}} + \frac{c_{\xi} g_{Z'}^{q}}{m_{Z'}^{2}} \right) \quad \chi \qquad \qquad \chi$$

$$\boxed{ \textbf{Vector current couplings of quarks to Z and Z'} \\ g_{Z}^{q} = \frac{ec_{\xi} (1 + \hat{s}_{W} t_{\varepsilon} t_{\xi})}{2\hat{s}_{W} \hat{c}_{W}} (T_{q}^{3} - 2Q_{q} s_{*}^{2}) \\ g_{Z'}^{q} = \frac{e(\hat{s}_{W} t_{\varepsilon} c_{\xi} - s_{\xi})}{2\hat{s}_{W} \hat{c}_{W}} (T_{q}^{3} - 2Q_{q} \hat{s}_{W}^{2}) - Q_{q} e\hat{c}_{W} t_{\varepsilon} c_{\xi} \qquad q \qquad q$$

Zhao-Huan Yu (SYSU)

Hidden U(1) Gauge DM

Dec 2020 13 / 21

Motivation	Hidden U(1) gauge theory	Dirac fermionic DM ○●○○	Complex scalar DM	Conclusions O
DM-nuc	leon Interactions			

DM-nucleon effective interactions are induced by DM-guark interactions

lower diagram vanishes because \hat{Z} is **massive**

 $rac{d}{d} \sim \chi q$ scattering is essentially induced by $j^{\mu}_{\rm FM}$

n carries no net electric charge $rac{d}{dr} G_{\gamma n}^{V} = 0$

 $\sim \frac{1}{k^2 - \hat{m}_{Z'}^2}$ $\sim -s_{W}\varepsilon k^2$ $\frac{1}{k^2 - \hat{m}_Z^2}$ $\sim g_{\rm V}^q \hat{g} / (2c_{\rm W})$ а

Motivation	Hidden U(1) gauge theory	Dirac fermionic DM ○○●○	Complex scalar DM	Conclusions O
Direct D	Detection			
$ \begin{array}{c} $	$= 0 \neq G_{\chi p}^{V} \textcircled{\ lsospin}$ analyses in direct detection \checkmark constraints or	n violation in DM [Feng <i>et .</i> ction experiments c n the normalized-te	scattering off nucleor al., 1102.4331, PLB] onventionally assume p-nucleon cross sec	ns e isospin etion σ^Z_N
🕈 Now 1	the spin-independent (SI) normalized-to-n	ucleon cross section	becomes
σ_l^2	$\sum_{N}^{Z} = \sigma_{\chi p} \frac{\sum_{i} \eta_{i} \mu_{\chi A_{i}}^{2} [Z + \sum_{i} \sum_{j \in \mathcal{J}_{i}} \sum_{j \in \mathcal{J}$	$\frac{(A_i - Z)G_{\chi n}^{\mathrm{V}}/G_{\chi p}^{\mathrm{V}}]^2}{\eta_i \mu_{\chi A_i}^2 A_i^2}$	$\frac{\Delta}{2} = \sigma_{\chi p} \frac{\sum_i \eta_i \mu_{\chi A_i}^2 Z^2}{\sum_i \eta_i \mu_{\chi A_i}^2 A_i^2}$	
Reduce	ced mass $\mu_{\chi A_i} \equiv m_\chi m_A$	$m_{\chi}/(m_{\chi}+m_{A_i})$		
🌓 χp so	cattering cross section $\sigma_{\chi p} = \mu_{\chi p}^2 (G_{\chi p}^V)^2,$	$/\pi$ (1.10) $\sigma_{z_{1}}$ (1.10) $\sigma_{z_{2}}$ (1.10)		
$ \bigcirc For \mathbf{x} \\ A_i = \{1$	enon (Z = 54) detection .28, 129, 130, 131, 13	on material, 2, 134, 136}	UND THE MERCEN CONTROL OF CONTROL	txyr, this work)
\bigcirc Fracti $\eta_i = \{1.$	ional number abundano 9%, 26%, 4.1%, 21%,	ce of A_i in nature 27%, 10%, 8.9%}	10 ⁻⁴⁷	

[XENON Coll., 1805.12562, PRL]

Zhao-Huan Yu (SYSU)

Hidden U(1) Gauge DM

Dec 2020 15 / 21

 $\overset{}{\times}$ Possible $\chi \bar{\chi}$ annihilation channels: $f\bar{f}$, W^+W^- , h_ih_i , Z_iZ_i , h_iZ_i with $h_i \in \{h, s\}$ and $Z_i \in \{Z, Z'\}$ Experimental constraints and sensitivity **DM relic abundance** $\Omega_{\rm DM}h^2 = 0.120 \pm 0.001$ [Planck Coll., 1807.06209, Astron. Astrophys.] 🔭 95% C.L. upper limits on DM annihilation cross section from Fermi-LAT γ -ray observations of dwarf galaxies [Fermi-LAT Coll., 1503.02641, PRL] 90% C.L. exclusion limits on σ_N^Z from the **XENON1T direct detection** experiment [XENON Coll., 1805.12562, PRL] @ 90% C.L. sensitivity of the future LZ direct detection experiment [Mount et al., 1703.09144]

Zhao-Huan Yu (SYSU)

Motivation	Hidden U(1) gauge theory		Complex scalar DM	Conclusions					
00	00000000	0000	0000						
Comple									
I OMDIO	omniov Scalar Llark Matter								

Laiai

 \mathbb{P} Assume the DM particle is a scalar boson ϕ with U(1)_x charge $q_{\phi} = 1/4$ $\mathcal{L}_{\phi} = (D^{\mu}\phi)^{\dagger}(D_{\mu}\phi) - \mu_{\phi}^{2}\phi^{\dagger}\phi + \lambda_{S\phi}\hat{S}^{\dagger}\hat{S}\phi^{\dagger}\phi + \lambda_{H\phi}\hat{H}^{\dagger}\hat{H}\phi^{\dagger}\phi + \lambda_{\phi}(\phi^{\dagger}\phi)^{2}$ **Global** U(1) symmetry $\phi \rightarrow e^{iq_{\phi}\theta}\phi$ should be preserved to protect j_{DM}^{μ} Summe the ϕ does not develop a VEV ϕ stable ϕ and ϕ particles \bigcirc The charge choice $q_{\phi} = q_S/4$ forbids unwanted scalar interaction terms like $\hat{S}^{\dagger}\hat{S}^{\dagger}\hat{S}^{\dagger}\phi$. $\hat{S}^{\dagger}\hat{S}^{\dagger}\phi$, $\hat{S}^{\dagger}\hat{S}^{\dagger}\phi\phi$, $\hat{S}^{\dagger}\phi\phi$, and $\hat{S}^{\dagger}\phi\phi\phi$, which would violate the global U(1) symmetry $\phi \rightarrow e^{iq_{\phi}\theta}\phi$ after the U(1)_x spontaneous symmetry breaking O The ϕ mass is given by $m_{\phi}^2 = \mu_{\phi}^2 - \frac{1}{2}\lambda_{S\phi}v_S^2 - \frac{1}{2}\lambda_{H\phi}v^2$ Kinetic mixing portal: mediation of the Z and Z' vector bosons \bigcirc Higgs portal: mediation of the *h* and *s* scalar bosons $\mathcal{L}_{\phi hs} = (\lambda_{S\phi} s_n v_S + \lambda_{H\phi} c_n v) \frac{h}{\phi} \phi^{\dagger} \phi + (\lambda_{S\phi} c_n v_S - \lambda_{H\phi} s_n v) s \phi^{\dagger} \phi$

Motivation	Hidden U(1) gauge theory	Dirac fermionic DM	Complex scalar DM ○●○○	Conclusions O
Effective	e DM Interaction	s		
🖇 DM-	quark effective interac	tions		2
$\mathcal{L}_{\phi q} = \sum_{q}$	$\int \left[G_{\phi q}^{V}(\phi^{\dagger}i\overleftrightarrow{\partial^{\mu}}\phi)\bar{q}\gamma_{\mu}q \right]$	$+G^{\rm S}_{\phi q}\phi^{\dagger}\phi\bar{q}q\Big], G^{\rm V}_{\phi q}$	$q = -\frac{q_{\phi} g_X}{c_{\varepsilon}} \left(\frac{s_{\xi} g_Z^q}{m_Z^2} - \right)$	$+ \frac{c_{\xi}g_{Z'}^q}{m_{Z'}^2} \bigg)$
$G_{\phi q}^{\rm S} = \frac{m}{v}$	$\frac{q}{r}\left[\frac{s_{\eta}}{m_s^2}\left(\lambda_{S\phi}c_{\eta}v_S-\lambda_{H\phi}\right)\right]$	$s_{\eta}v\big)-\frac{c_{\eta}}{m_h^2}\big(\lambda_{S\phi}s_{\eta}v_S$	$+ \lambda_{H\phi} c_{\eta} v \Big]$	
🛛 🎈 DM-	nucleon effective inter	ractions	$\phi \qquad \phi \phi$	φ
$\mathcal{L}_{\phi N} = \int_{N}^{N}$	$\sum_{i=p,n} \left[G^{\rm V}_{\phi N}(\phi^{\dagger} i\overleftrightarrow{\partial^{\mu}}\phi) \bar{N}\gamma\right]$	$Y_{\mu}N + G^{\rm S}_{\phi N}\phi^{\dagger}\phi\bar{N}N$	{ <i>Z</i> , <i>Z'</i> +	h, s
🌔 Simil	ar to the Dirac fermior	n case, we have		
$G_{\phi p}^{V}$	$= \frac{q_{\phi}g_X e \hat{c}_W t_{\varepsilon} c_{\xi}^2 (1+t_{\xi}^2)}{c_{\varepsilon}m_{Z'}^2}$	(r) , $G_{\phi n}^{\vee} = 0$	q q q $q\overline{\phi} \overline{\phi} \overline{\phi}$	q $\bar{\phi}$
🌗 Scala	r-type effective couplir	igs		
$G_{\phi N}^{S} = n$	$a_N \sum_q rac{G_{\phi q}^{ m S} f_q^N}{m_q}, f_q^N$ as	The quark form factors $G^{\rm S}_{\phi p} \simeq G^{\rm S}_{\phi n}$		

Zhao-Huan Yu (SYSU)

Hidden U(1) Gauge DM

Motivation 00	Hidden U(1) gauge theory	Dirac fermionic DM	Complex scalar DM ○○●○	Conclusions O
Direct De	tection			

$$\begin{split} & \label{eq:phi} \oint \phi N \text{ and } \bar{\phi} N \text{ scattering cross sections} \\ & \sigma_{\phi N} = \frac{\mu_{\phi N}^2 f_{\phi N}^2}{\pi}, \quad f_{\phi N} = \frac{G_{\phi N}^S}{2m_\phi} + G_{\phi N}^V \\ & \sigma_{\bar{\phi} N} = \frac{\mu_{\phi N}^2 f_{\bar{\phi} N}^2}{\pi}, \quad f_{\bar{\phi} N} = \frac{G_{\phi N}^S}{2m_\phi} - G_{\phi N}^V \\ & \hline & \end{tabular} \\ & \end{tabular} \\$$

Zhao-Huan Yu (SYSU)

Hidden U(1) Gauge DM

Dec 2020 20 / 21

Motivation	Hidden U(1) gauge theory	Dirac fermionic DM	Complex scalar DM	Conclusions
Conclusion	IS			

- We explore Dirac fermionic and complex scalar dark matter in a hidden $U(1)_X$ gauge theory with kinetic mixing
- The $U(1)_X$ gauge symmetry is spontaneously broken due to a Higgs field
- The kinetic mixing provides a portal to dark matter
- An additional Higgs portal can be realized in the complex scalar DM case
- Dark matter interactions with nucleons are typically isospin violating, and direct detection constraints could be relieved
- We find that there are several available parameter regions predicting the **observed relic abundance** and have not been totally explored in current DM detection experiments

Motivation	Hidden U(1) gauge theory	Dirac fermionic DM	Complex scalar DM	Conclusions •
Conclusion	าร			

- We explore Dirac fermionic and complex scalar dark matter in a hidden $U(1)_X$ gauge theory with kinetic mixing
- The $U(1)_X$ gauge symmetry is spontaneously broken due to a Higgs field
- The kinetic mixing provides a portal to dark matter
- An additional Higgs portal can be realized in the complex scalar DM case
- Dark matter interactions with nucleons are typically isospin violating, and direct detection constraints could be relieved
- We find that there are several available parameter regions predicting the **observed relic abundance** and have not been totally explored in current DM detection experiments

Thanks for your attention!