Direct and Indirect Detection of Dark Matter

Zhao-Huan Yu (余钊焕)

School of Physics, Sun Yat-Sen University

http://yzhxxzxy.github.io

June 18, 2019

Dark Matter in the Universe

Dark matter (DM) makes up most of the matter component in the Universe, as suggested by astrophysical and cosmological observations

Direct and Indirect Detection of Dark Matter

Inferred Properties of Dark Matter

- Dark (electrically neutral): no light emitted from it
- Nonbaryonic: BBN & CMB observations
- Long lived: survived from early eras of the Universe to now
- Colorless: otherwise, it would bind with nuclei
- Cold: structure formation theory
- Abundance: more than 80% of all matter in the Universe $\rho_{\rm DM}\sim 0.3-0.4~{\rm GeV/cm^3}~{\rm near}~{\rm the}~{\rm earth}$

Indirect Detection

DM Relic Abundance

If DM particles (χ) were thermally produced in the early Universe, their **relic abundance** would be determined by the annihilation cross section $\langle \sigma_{ann} \nu \rangle$:

$$\Omega_{\chi}h^2 \simeq \frac{3 \times 10^{-27} \text{ cm}^3 \text{ s}^{-1}}{\langle \sigma_{\rm ann} \nu \rangle}$$

Observation value $\Omega_{\chi} h^2 \simeq 0.1$

$$\Rightarrow \quad \langle \sigma_{\rm ann} \nu \rangle \simeq 3 \times 10^{-26} \ {\rm cm}^3 \, {\rm s}^{-1}$$

Assuming the annihilation process consists of two weak interaction vertices with the SU(2)_L gauge coupling $g \simeq 0.64$, for $m_{\chi} \sim O(\text{TeV})$ we have

$$\langle \sigma_{\rm ann} \nu \rangle \sim \frac{g^4}{16\pi^2 m_{\chi}^2} \sim \mathcal{O}(10^{-26}) \ {\rm cm}^3 \, {\rm s}^{-1}$$

 \Rightarrow A very attractive class of DM candidates:

Weakly interacting massive particles (WIMPs)

Zhao-Huan Yu (SYSU)

Indirect Detection

Experimental Approaches to Dark Matter

WIMP Scattering off Atomic Nuclei

[Bing-Lin Young, Front. Phys. 12, 121201 (2017)]

WIMP Velocity Distribution

During the collapse process which formed the Galaxy, WIMP velocities were "thermalized" by fluctuations in the gravitational potential, and WIMPs have a **Maxwell-Boltzmann velocity distribution** in the **Galactic rest frame**:

$$\tilde{f}(\tilde{\mathbf{v}})d^{3}\tilde{v} = \left(\frac{m_{\chi}}{2\pi k_{\rm B}T}\right)^{3/2} \exp\left(-\frac{m_{\chi}\tilde{v}^{2}}{2k_{\rm B}T}\right)d^{3}\tilde{v} = \frac{e^{-\tilde{v}^{2}/v_{0}^{2}}}{\pi^{3/2}v_{0}^{3}}d^{3}\tilde{v}, \quad v_{0}^{2} \equiv \frac{2k_{\rm B}T}{m_{\chi}}$$

$$\langle \tilde{\mathbf{v}} \rangle = \int \tilde{\mathbf{v}} \tilde{f}(\tilde{\mathbf{v}}) \mathrm{d}^3 \tilde{v} = \mathbf{0}, \quad \langle \tilde{v}^2 \rangle = \int \tilde{v}^2 \tilde{f}(\tilde{\mathbf{v}}) \mathrm{d}^3 \tilde{v} = \frac{3}{2} v_0^2$$

Speed distribution:
$$\tilde{f}(\tilde{v})d\tilde{v} = \frac{4\tilde{v}^2}{\sqrt{\pi}v_0^3}e^{-\tilde{v}^2/v_0^2}d\tilde{v}$$

For an **isothermal** halo, the local value of v_0 equals to the **rotational speed of the Sun**: $v_0 = v_{\odot} \simeq 220 \text{ km/s}$

[Binney & Tremaine, Galactic Dynamics, Chapter 4]

[Credit: ESO/L. Calçada]

Velocity dispersion:
$$\sqrt{\langle \tilde{v}^2 \rangle} = \sqrt{3/2} v_0 \simeq 270 \text{ km/s}$$

Zhao-Huan Yu (SYSU)

Indirect Detection

Earth Rest Frame

The WIMP velocity distribution $f(\mathbf{v})$ seen by an observer on the Earth can be derived via **Galilean transformation**

$$\tilde{\mathbf{v}} = \mathbf{v} + \mathbf{v}_{\text{obs}}, \quad \mathbf{v}_{\text{obs}} = \mathbf{v}_{\odot} + \mathbf{v}_{\oplus}$$

Velocity distribution: $f(\mathbf{v}) = \tilde{f}(\mathbf{v} + \mathbf{v}_{obs})$ Speed distribution:

$$f(\nu)d\nu = \frac{4\nu^2}{\sqrt{\pi}\nu_0^3} \exp\left(-\frac{\nu^2 + \nu_{obs}^2}{\nu_0^2}\right)$$
$$\times \frac{\nu_0^2}{2\nu\nu_{obs}} \sinh\left(\frac{2\nu\nu_{obs}}{\nu_0^2}\right)d\nu$$

Since $v_{\oplus} \ll v_{\odot}$, we have $(\omega = 2\pi/\text{year})$

$$v_{obs}(t) \simeq v_{\odot} + v_{\oplus} \sin \delta \cos[\omega(t - t_0)]$$

$$\simeq 220 \text{ km/s} + 15 \text{ km/s} \cdot \cos[\omega(t - t_0)]$$

⇒ Annual modulation signal peaked on June 2 [Freese et al., PRD 37, 3388 (1988)]

Zhao-Huan Yu (SYSU)

Direct and Indirect Detection of Dark Matter

Indirect Detection

Nuclear Recoil

Energy conservation:

Zhao-Huan Yu (SYSU)

$$\frac{1}{2}m_{\chi}v^{2} = \frac{1}{2}m_{\chi}v_{\chi}^{2} + \frac{1}{2}m_{A}v_{R}^{2}$$

Momentum conservation:

$$m_{\chi}v = m_{\chi}v_{\chi}\cos\theta_{\chi} + m_{A}v_{R}\cos\theta_{R}$$
$$m_{\chi}v_{\chi}\sin\theta_{\chi} = m_{A}v_{R}\sin\theta_{R}$$

$$\Rightarrow \text{ Recoil velocity } v_{\text{R}} = \frac{2m_{\chi}v\cos\theta_{\text{R}}}{m_{\chi}+m_{A}}$$

WIMP Nucleus

$$\chi \qquad \nu$$

 $\chi \qquad \nu$
 A
 Θ_{χ}
 Θ_{R}
 A
 V_{R}

 $\Rightarrow \text{ Recoil momentum (momentum transfer) } q_{\text{R}} = m_A v_{\text{R}} = 2\mu_{\chi A} v \cos \theta_{\text{R}}$

Reduced mass of the
$$\chi A$$
 system $\mu_{\chi A} \equiv \frac{m_{\chi} m_A}{m_{\chi} + m_A} = \begin{cases} m_A, & \text{for } m_{\chi} \gg m_A \\ \frac{1}{2} m_{\chi}, & \text{for } m_{\chi} = m_A \\ m_{\chi}, & \text{for } m_{\chi} \ll m_A \end{cases}$

Forward scattering $(\theta_{\rm R}=0)$ \Rightarrow maximal momentum transfer $q_{\rm R}^{\rm max}=2\mu_{\chi A} v$

Indirect Detection

Nuclear Recoil

Energy conservation:

$$\frac{1}{2}m_{\chi}v^{2} = \frac{1}{2}m_{\chi}v_{\chi}^{2} + \frac{1}{2}m_{A}v_{R}^{2}$$

Momentum conservation:

$$m_{\chi}v = m_{\chi}v_{\chi}\cos\theta_{\chi} + m_{A}v_{R}\cos\theta_{R}$$
$$m_{\chi}v_{\chi}\sin\theta_{\chi} = m_{A}v_{R}\sin\theta_{R}$$

$$\Rightarrow \text{ Recoil velocity } v_{\text{R}} = \frac{2m_{\chi}v\cos\theta_{\text{R}}}{m_{\chi} + m_{A}}$$

0

 $\Rightarrow \text{ Recoil momentum (momentum transfer) } q_{\text{R}} = m_A v_{\text{R}} = 2\mu_{\chi A} v \cos \theta_{\text{R}}$

 $\Rightarrow \text{ Kinetic energy of the recoiled nucleus } \underline{E}_{R} = \frac{q_{R}^{2}}{2m_{A}} = \frac{2\mu_{\chi A}^{2}}{m_{A}}\nu^{2}\cos^{2}\theta_{R}$

As
$$v \sim 10^{-3}$$
, for $m_{\chi} = m_A \simeq 100$ GeV and $\theta_{\rm R} = 0$,
 $q_{\rm R} = m_{\chi} v \sim 100$ MeV, $E_{\rm R} = \frac{1}{2} m_{\chi} v^2 \sim 50$ keV

Zhao-Huan Yu (SYSU)

Indirect Detection

Event Rate

Event rate per unit time per unit energy interval:

$$\frac{\mathrm{d}R}{\mathrm{d}E_{\mathrm{R}}} = N_{\mathrm{T}} \frac{\rho_{\oplus}}{m_{\chi}} \int_{\nu_{\mathrm{min}}}^{\nu_{\mathrm{max}}} \mathrm{d}^{3}\nu f(\mathbf{v})\nu \frac{\mathrm{d}\sigma_{\chi A}}{\mathrm{d}E_{\mathrm{R}}}$$

Astrophysics factors Particle physics factors Detector factors

$N_{\rm T}$: target nucleus number

 $\rho_{\oplus} \simeq 0.3 - 0.4 \text{ GeV/cm}^3$: DM mass density around the Earth

 $(\rho_{\oplus}/m_{\chi}$ is the DM particle **number density** around the Earth) $\sigma_{\chi A}$: DM-nucleus scattering cross section

Minimal velocity $v_{\min} = \left(\frac{m_A E_R^{\text{th}}}{2\mu_{\chi A}^2}\right)^{1/2}$: determined by the detector threshold of nuclear recoil energy, E_R^{th}

Maximal velocity v_{max} : determined by the DM escape velocity v_{esc}

 $(v_{esc} \simeq 544 \text{ km/s} \text{ [Smith et al., MNRAS 379, 755]})$

Cross Section Dependence on Nucleus Spin

There are two kinds of DM-nucleus scattering

Spin-independent (SI) cross section: $\sigma_{\chi A}^{\text{SI}} \propto \mu_{\chi A}^2 [ZG_p + (A-Z)G_n]^2$ **Spin-dependent (SD)** cross section: $\sigma_{\chi A}^{\text{SD}} \propto \mu_{\chi A}^2 \frac{J_A + 1}{J_A} (S_p^A G'_p + S_n^A G'_n)^2$

Nucleus properties: mass number A, atomic number Z, spin J_A , expectation value of the proton (neutron) spin content in the nucleus $S_p^A(S_n^A)$ $G_p^{(\prime)}$ and $G_n^{(\prime)}$: DM effective couplings to the proton and the neutron

- $Z \simeq A/2 \Rightarrow \sigma_{\chi A}^{SI} \propto A^2[(G_p + G_n)/2]^2$ Strong coherent enhancement for heavy nuclei
- Spins of nucleons tend to **cancel out** among themselves:
 - $S_N^A \simeq 1/2$ (N = p or n) for a nucleus with an odd number of N
 - $S_N^A \simeq 0$ for a nucleus with an even number of N

Indirect Detection

Three Levels of Interaction

- As a variety of target nuclei are used in direct detection experiments, results are usually compared with each other at the DM-nucleon level
- The DM-nucleon level is related to the DM-parton level via form factors, which describe the probabilities of finding partons inside nucleons
- Relevant partons involve not only valence quarks, but also sea quarks and gluons

Zero Momentum Transfer Limit

- As the momentum transfer is typically much smaller than the underlying energy scale (*e.g.*, mediator mass), the zero momentum transfer limit is a good approximation for calculation
- In this limit, the mediator field can be integrated out, and the interaction can be described by **effective operators** in **effective field theory**

Effective Operators for DM-nucleon interactions

Assuming the DM particle is a **Dirac fermion** χ and using **Dirac fields** p and n to describe the proton and the neutron, the effective Lagrangian reads

$$\mathcal{L}_{\text{eff},N} = \sum_{N=p,n} \sum_{ij} G_{N,ij} \bar{\chi} \Gamma^{i} \chi \bar{N} \Gamma_{j} N, \quad \Gamma^{i}, \Gamma^{j} \in \{1, i\gamma_{5}, \gamma^{\mu}, \gamma^{\mu} \gamma_{5}, \sigma^{\mu\nu}\}$$

[Bélanger et al., arXiv:0803.2360, Comput.Phys.Commun.]

- Lorentz indices in Γ^i and Γ_i should be contracted in pair
- Effective couplings $G_{N,ij}$ have a mass dimension of -2: $[G_{N,ij}] = [Mass]^{-2}$
- $\bar{\chi}\chi\bar{N}N$ and $\bar{\chi}\gamma^{\mu}\chi\bar{N}\gamma_{\mu}N$ lead to **SI** DM-nucleon scattering
- $\bar{\chi}\gamma^{\mu}\gamma_5\chi\bar{N}\gamma_{\mu}\gamma_5N$ and $\bar{\chi}\sigma^{\mu\nu}\chi\bar{N}\sigma_{\mu\nu}N$ lead to **SD** DM-nucleon scattering
- The following operators lead to scattering cross sections $\sigma_{\chi N} \propto |Q^2|$: $\bar{\chi} i \gamma_5 \chi \bar{N} i \gamma_5 N, \ \bar{\chi} \chi \bar{N} i \gamma_5 N, \ \bar{\chi} i \gamma_5 \chi \bar{N} N, \ \bar{\chi} \gamma^{\mu} \chi \bar{N} \gamma_{\mu} \gamma_5 N, \ \bar{\chi} \gamma^{\mu} \gamma_5 \chi \bar{N} \gamma_{\mu} N$
- For a Majorana fermion χ instead, we have $\bar{\chi}\gamma^{\mu}\chi = 0$ and $\bar{\chi}\sigma^{\mu\nu}\chi = 0$, and hence the related operators vanish

Zhao-Huan Yu (SYSU)

Direct and Indirect Detection of Dark Matter

Higgs Portal for Majorana Fermionic DM

Interactions for a Majorana fermion χ , the SM Higgs boson *h*, and quarks *q*:

$$\mathcal{L}_{\rm DM} \supset \frac{1}{2} g_{\chi} h \bar{\chi} \chi$$
$$\mathcal{L}_{\rm SM} \supset -\sum_{q} \frac{m_{q}}{\nu} h \bar{q} q, \quad q = d, u, s, c, b, t$$

The amplitude for $\chi(p_1) + q(k_1) \rightarrow \chi(p_2) + q(k_2)$:

$$\mathbf{i}\mathcal{M} = \mathbf{i}g_{\chi}\bar{u}(p_2)u(p_1)\frac{\mathbf{i}}{Q^2 - m_h^2} \left(-\mathbf{i}\frac{m_q}{\nu}\right)\bar{u}(k_2)u(k_1)$$

Zero momentum transfer $\Downarrow Q^2 = (k_2 - k_1)^2 \rightarrow 0$

$$\mathcal{L}_{\text{eff},q} = \sum_{q} G_{\text{S},q} \bar{\chi} \chi \bar{q} q, \quad G_{\text{S},q} = -\frac{g_{\chi} m_{q}}{2 \nu m_{h}^{2}}$$

Zhao-Huan Yu (SYSU)

Effective Lagrangian: Scalar Type

Scalar-type effective Lagrangian for a spin-1/2 fermion χ :

$$\mathcal{L}_{\mathrm{S},q} = \sum_{q} G_{\mathrm{S},q} \,\bar{\chi} \,\chi \bar{q} q \quad \Rightarrow \quad \mathcal{L}_{\mathrm{S},N} = \sum_{N=p,n} G_{\mathrm{S},N} \,\bar{\chi} \,\chi \bar{N} N$$
$$G_{\mathrm{S},N} = m_N \left(\sum_{q=u,d,s} \frac{G_{\mathrm{S},q}}{m_q} f_q^N + \sum_{q=c,b,t} \frac{G_{\mathrm{S},q}}{m_q} f_Q^N \right)$$

The second term accounts for DM interactions with gluons through loops of heavy quarks (c, b, and t): $f_Q^N = \frac{2}{27} \left(1 - \sum_{q=u,d,s} f_q^N\right)$

Form factor f_q^N is the contribution of q to m_N : $\langle N | m_q \bar{q} q | N \rangle = f_q^N m_N$ $f_u^p \simeq 0.020, \quad f_d^p \simeq 0.026, \quad f_u^n \simeq 0.014, \quad f_d^n \simeq 0.036, \quad f_s^p = f_s^n \simeq 0.118$ [Ellis *et al.*, arXiv:hep-ph/0001005, PLB]

The scalar type induces SI DM-nucleon scattering with a cross section of

$$\sigma_{\chi N}^{\rm SI} = \frac{n_{\chi}}{\pi} \mu_{\chi N}^2 G_{\rm S,N}^2, \quad \mu_{\chi N} \equiv \frac{m_{\chi} m_N}{m_{\chi} + m_N}, \quad n_{\chi} = \begin{cases} 1, & \text{for Dirac fermion } \chi \\ 4, & \text{for Majorana fermion } \chi \end{cases}$$

Z Portal for Majorana Fermionic DM

Interactions for a Majorana fermion χ , the Z boson, and quarks q:

$$\mathcal{L}_{\rm DM} \supset \frac{1}{2} g_{\chi} Z_{\mu} \bar{\chi} \gamma^{\mu} \gamma_5 \chi, \quad \mathcal{L}_{\rm SM} \supset \frac{g}{2c_{\rm W}} Z_{\mu} \sum_{q} \bar{q} \gamma^{\mu} (g_{\rm V}^{q} - g_{\rm A}^{q} \gamma_5) q$$
$$g_{\rm V}^{u_i} = \frac{1}{2} - \frac{4}{3} s_{\rm W}^2, \quad g_{\rm V}^{d_i} = -\frac{1}{2} + \frac{2}{3} s_{\rm W}^2, \quad g_{\rm A}^{u_i} = \frac{1}{2} = -g_{\rm A}^{d_i}, \quad c_{\rm W} \equiv \cos \theta_{\rm W}, \quad s_{\rm W} \equiv \sin \theta_{\rm W}$$

Z boson propagator
$$\frac{-\mathrm{i}}{Q^2 - m_Z^2} \left(g_{\mu\nu} - \frac{Q_{\mu}Q_{\nu}}{m_Z^2} \right) \xrightarrow{Q^2 \to 0} \frac{\mathrm{i}}{m_Z^2} g_{\mu\nu}$$

Effective Lagrangian in the zero momentum transfer limit:

$$\mathcal{L}_{\mathrm{eff},q} = \sum_{q} \bar{\chi} \gamma^{\mu} \gamma_{5} \chi (G_{\mathrm{A},q} \bar{q} \gamma_{\mu} \gamma_{5} q + G_{\mathrm{AV},q} \bar{q} \gamma_{\mu} q), \quad G_{\mathrm{A},q} = \frac{g_{\chi} g g_{\mathrm{A}}^{q}}{4c_{\mathrm{W}} m_{Z}^{2}}$$

 $G_{\rm AV,q} = -\frac{g_{\chi}gg_{\rm V}^q}{4c_{\rm W}m_Z^2}$ leads to $\sigma_{\chi N} \propto |Q^2|$ and can be neglected for direct detection

Effective Lagrangian: Axial Vector Type

Axial-vector-type effective Lagrangian for a spin-1/2 fermion χ :

$$\begin{split} \mathcal{L}_{\mathrm{A},q} &= \sum_{q} G_{\mathrm{A},q} \bar{\chi} \gamma^{\mu} \gamma_{5} \chi \bar{q} \gamma_{\mu} \gamma_{5} q \quad \Rightarrow \quad \mathcal{L}_{\mathrm{A},N} = \sum_{N=p,n} G_{\mathrm{A},N} \bar{\chi} \gamma^{\mu} \gamma_{5} \chi \bar{N} \gamma_{\mu} \gamma_{5} N \\ G_{\mathrm{A},N} &= \sum_{q=u,d,s} G_{\mathrm{A},q} \Delta_{q}^{N}, \quad 2 \Delta_{q}^{N} s_{\mu} \equiv \langle N | \bar{q} \gamma_{\mu} \gamma_{5} q | N \rangle \end{split}$$

Form factors Δ_q^N account the contributions of quarks and anti-quarks to the nucleon spin vector s_{μ} , and can be extracted from lepton-proton scattering data:

$$\Delta_u^p = \Delta_d^n \simeq 0.842, \quad \Delta_d^p = \Delta_u^n \simeq -0.427, \quad \Delta_s^p = \Delta_s^n \simeq -0.085$$
[HERMES coll., arXiv:hep-ex/0609039, PRD]

Neutron form factors are related to proton form factors by isospin symmetry

The axial vector type induces **SD** DM-nucleon scattering:

$$\sigma_{\chi N}^{\rm SD} = \frac{3n_{\chi}}{\pi} \mu_{\chi N}^2 G_{\rm A,N}^2, \quad n_{\chi} = \begin{cases} 1, & \text{for Dirac fermion } \chi \\ 4, & \text{for Majorana fermion } \chi \end{cases}$$

Indirect Detection

Z Portal for Complex Scalar DM

Interactions for a **complex scalar** χ , the Z **boson**, and quarks q:

$$\begin{split} \mathcal{L}_{\mathrm{DM}} &\supset g_{\chi} Z_{\mu} (\mathrm{i} \chi^* \overleftarrow{\partial^{\mu}} \chi) \\ \mathcal{L}_{\mathrm{SM}} &\supset \frac{g}{2c_{\mathrm{W}}} Z_{\mu} \sum_{q} \bar{q} \gamma^{\mu} (g_{\mathrm{V}}^{q} - g_{\mathrm{A}}^{q} \gamma_{5}) q \\ \mathrm{i} \mathcal{M} &= \mathrm{i} g_{\chi} (p_{1} + p_{2})^{\mu} \frac{-\mathrm{i} (g_{\mu\nu} - Q_{\mu} Q_{\nu} / m_{Z}^{2})}{Q^{2} - m_{Z}^{2}} \\ &\times \mathrm{i} \frac{g}{2c_{\mathrm{W}}} \bar{u}(k_{2}) \gamma^{\nu} (g_{\mathrm{V}}^{q} - g_{\mathrm{A}}^{q} \gamma_{5}) u(k_{1}) \\ \frac{Q^{2} \rightarrow 0}{\longrightarrow} -\mathrm{i} \frac{g_{\chi} g}{2c_{\mathrm{W}} m_{Z}^{2}} (p_{1} + p_{2})^{\mu} \bar{u}(k_{2}) \gamma_{\mu} (g_{\mathrm{V}}^{q} - g_{\mathrm{A}}^{q} \gamma_{5}) u(k_{1}) \\ \mathcal{L}_{\mathrm{eff},q} &= \sum_{q} (\mathrm{i} \chi^* \overleftarrow{\partial^{\mu}} \chi) (F_{\mathrm{V},q} \bar{q} \gamma_{\mu} q + F_{\mathrm{VA},q} \bar{q} \gamma_{\mu} \gamma_{5} q) \\ F_{\mathrm{V},q} &= -\frac{g_{\chi} g g_{\mathrm{V}}^{q}}{2c_{\mathrm{W}} m_{Z}^{2}}, \quad F_{\mathrm{VA},q} &= \frac{g_{\chi} g g_{\mathrm{A}}^{q}}{2c_{\mathrm{W}} m_{Z}^{2}} (\Rightarrow \sigma_{\chi N} \propto |Q^{2}|) \end{split}$$

Effective Lagrangian: Vector Type

 \mathfrak{B} Vector-type effective Lagrangian for a **complex scalar** χ :

$$\mathcal{L}_{\mathrm{V},q} = \sum_{q} F_{\mathrm{V},q} (\mathrm{i} \chi^* \overleftarrow{\partial^{\mu}} \chi) \bar{q} \gamma_{\mu} q \quad \Rightarrow \quad \mathcal{L}_{\mathrm{A},N} = \sum_{N=p,n} F_{\mathrm{V},N} (\mathrm{i} \chi^* \overleftarrow{\partial^{\mu}} \chi) \bar{N} \gamma_{\mu} N$$

The relation between $F_{V,N}$ and $F_{V,q}$ reflects the valence quark numbers in N:

$$F_{V,p} = 2F_{V,u} + F_{V,d}, \quad F_{V,n} = F_{V,u} + 2F_{V,d}$$

The vector type induces **SI** DM-nucleon scattering: $\sigma_{\chi N}^{SI} = \frac{1}{\pi} \mu_{\chi N}^2 F_{V,N}^2$

 \mathfrak{B} Vector-type effective Lagrangian for a **Dirac fermion** χ :

$$\mathcal{L}_{\mathrm{V},q} = \sum_{q} G_{\mathrm{V},q} \bar{\chi} \gamma^{\mu} \chi \bar{q} \gamma_{\mu} q \quad \Rightarrow \quad \mathcal{L}_{\mathrm{A},N} = \sum_{N=p,n} G_{\mathrm{V},N} \bar{\chi} \gamma^{\mu} \chi \bar{N} \gamma_{\mu} N$$

It also induces **SI** DM-nucleon scattering:

$$\sigma_{\chi N}^{\rm SI} = \frac{1}{\pi} \mu_{\chi N}^2 G_{\rm V,N}^2, \quad G_{\rm V,p} = 2G_{\rm V,u} + G_{\rm V,d}, \quad G_{\rm V,n} = G_{\rm V,u} + 2G_{\rm V,d}$$

Zhao-Huan Yu (SYSU)

Direct and Indirect Detection of Dark Matter

Effective Operators for DM-quark Interactions

	Spin-1/2 DM	Spin-0 DM
SI	$ar{\chi}\chiar{q}q,\ ar{\chi}\gamma^\mu\chiar{q}\gamma_\mu q$	$\chi^*\chi \bar{q}q$, $(i\chi^*\overleftrightarrow{\partial^\mu}\chi)\bar{q}\gamma_\mu q$
SD	$ar{\chi}\gamma^{\mu}\gamma_{5}\chiar{q}\gamma_{\mu}\gamma_{5}q,\ ar{\chi}\sigma^{\mu u}\chiar{q}\sigma_{\mu u}q$	
$\sigma_{\chi N} \propto Q^2 $	$ar{\chi}$ i $\gamma_5 \chi ar{q}$ i $\gamma_5 q$, $ar{\chi} \chi ar{q}$ i $\gamma_5 q$ $ar{\chi}$ i $\gamma_5 \chi ar{q} q$, $ar{\chi} \gamma^{\mu} \chi ar{q} \gamma_{\mu} \gamma_5 q$ $ar{\chi} \gamma^{\mu} \gamma_5 \chi ar{q} \gamma_{\mu} q$, $\varepsilon^{\mu \nu ho \sigma} ar{\chi} \sigma^{\mu \nu} \chi ar{q} \sigma_{ ho \sigma} q$	$\chi^* \chi \bar{q} \mathrm{i} \gamma_5 q$ $(\mathrm{i} \chi^* \overleftarrow{\partial^\mu} \chi) \bar{q} \gamma_\mu \gamma_5 q$
	Spin-3/2 DM	Spin-1 DM
SI	$ar{\chi}^{\mu}\chi_{\mu}ar{q}q,\ \ ar{\chi}^{ u}\gamma^{\mu}\chi_{ u}ar{q}\gamma_{\mu}q$	$\chi^*_{\mu}\chi^{\mu}\bar{q}q, (\mathrm{i}\chi^*_{\nu}\overleftrightarrow{\partial^{\mu}}\chi^{\nu})\bar{q}\gamma_{\mu}q$
SD	$ar{\chi}^{ u}\gamma^{\mu}\gamma_{5}\chi_{ u}ar{q}\gamma_{\mu}\gamma_{5}q, \ \ ar{\chi}^{ ho}\sigma^{\mu u}\chi_{ ho}ar{q}\sigma_{\mu u}q \ { m i}(ar{\chi}^{\mu}\chi^{ u}-ar{\chi}^{ u}\chi^{\mu})ar{q}\sigma_{\mu u}q$	$i(\chi_{\mu}^{*}\chi_{\nu} - \chi_{\nu}^{*}\chi_{\mu})\bar{q}\sigma^{\mu\nu}q$ $\varepsilon^{\mu\nu\rho\sigma}(\chi_{\mu}^{*}\overleftrightarrow{\partial_{\nu}}\chi_{\rho})\bar{q}\gamma_{\sigma}\gamma_{5}q$
$\sigma_{\chi N} \propto Q^2 $	$\begin{split} \bar{\chi}^{\mu} i\gamma_{5}\chi_{\mu}\bar{q}i\gamma_{5}q, \bar{\chi}^{\mu}\chi_{\mu}\bar{q}i\gamma_{5}q \\ \bar{\chi}^{\mu} i\gamma_{5}\chi_{\mu}\bar{q}q, \bar{\chi}^{\nu}\gamma^{\mu}\chi_{\nu}\bar{q}\gamma_{\mu}\gamma_{5}q \\ \bar{\chi}^{\mu}\gamma^{\mu}\gamma_{5}\chi_{\nu}\bar{q}\gamma_{\mu}q, \varepsilon^{\mu\nu\rho\sigma}i(\bar{\chi}_{\mu}\chi_{\nu}-\bar{\chi}_{\nu}\chi_{\mu})\bar{q}\sigma_{\rho\sigma}q \\ \varepsilon^{\mu\nu\rho\sigma}\bar{\chi}^{\alpha}\sigma_{\mu\nu}\chi_{\alpha}\bar{q}\sigma_{\rho\sigma}q, (\bar{\chi}^{\mu}\gamma_{5}\chi^{\nu}-\bar{\chi}^{\nu}\gamma_{5}\chi^{\mu})\bar{q}\sigma_{\mu\nu}q \\ \varepsilon^{\mu\nu\rho\sigma}(\bar{\chi}_{\mu}\gamma_{5}\chi_{\nu}-\bar{\chi}_{\nu}\gamma_{5}\chi_{\mu})\bar{q}\sigma_{\rho\sigma}q \end{split}$	$\begin{aligned} \chi^*_{\mu} \chi^{\mu} \bar{q} i \gamma_5 q \\ (i \chi^*_{\nu} \overleftrightarrow{\partial^{\mu}} \chi^{\nu}) \bar{q} \gamma_{\mu} \gamma_5 q \\ \varepsilon^{\mu\nu\rho\sigma} (\chi^*_{\mu} \overleftrightarrow{\partial_{\nu}} \chi_{\rho}) \bar{q} \gamma_{\sigma} q \\ \varepsilon^{\mu\nu\rho\sigma} i (\chi^*_{\mu} \chi_{\nu} - \chi^*_{\nu} \chi_{\mu}) \bar{q} \sigma_{\rho\sigma} q \end{aligned}$

[Zheng, ZHY, Shao, Bi, Li, Zhang, arXiv:1012.2022, NPB; ZHY, Zheng, Bi, Li, Yao, Zhang, arXiv:1112.6052, NPB]

Zhao-Huan Yu (SYSU)

Direct and Indirect Detection of Dark Matter

Technologies and Detector Material

Technologies and Detector Material

Example: Dual-phase Xenon Time Projection Chamber

Upper: Xenon gas Lower: Liquid Xenon

UV scintillation photons recorded by photomultiplier tube (PMT) arrays on top and bottom

- **Primary scintillation (S1):** Scintillation light promptly emitted from the interaction vertex
- Secondary scintillation (S2): lonization electrons emitted from the interaction are drifted to the surface and into the gas, where they emit proportional scintillation light

Experiments: XENON, LUX, PandaX

[From A. Cottle's talk (2017)]

25 / 56

Dark Matter

Direct Detection

Indirect Detection

PandaX-II Real Data: S1 versus S2

- S1 and S2: characterized by numbers of photoelectrons (PEs) in PMTs
- The γ background, which produces electron recoil (ER) events, can be distinguished from nuclear recoil (NR) events using the S2-to-S1 ratio

Backgrounds

Background suppression:

Deep underground Shielded environments

- Cosmogenic backgrounds:
 - Cosmic rays and secondary reactions
 - Activation products in shields and detectors
- Radiogenic backgrounds:
 - External natural radioactivity: walls, structures of site, radon
 - Internal radioactivity:

Indirect Detection

China JinPing Underground Laboratory (CJPL)

Experiments: CDEX, PandaX

Zhao-Huan Yu (SYSU)

Direct and Indirect Detection of Dark Matter

Exclusion Limits for SI Scattering

Assuming isospin conservation $(G_p = G_n)$ for SI scattering, we can treat protons and neutrons as the same species, "nucleons"

Exclusion Limits for SI Scattering

Assuming isospin conservation $(G_p = G_n)$ for SI scattering, we can treat protons and neutrons as the same species, "nucleons"

Zhao-Huan Yu (SYSU)

Direct and Indirect Detection of Dark Matter

Exclusion Limits for SD Scattering

- For **SD** scattering, specific detection material usually has very different sensitivities to WIMP-proton and WIMP-neutron cross sections
- As there is no coherent enhancement for SD scattering, the sensitivity is **lower** than the SI case by **several orders of magnitude**

DAMA/LIBRA Annual Modulation "Signal"

Highly radio-pure scintillating Nal(TI) crystals at Gran Sasso, Italy
 Annual modulation signal observed over 14 cycles at 9.3σ significance
 No background/signal discrimination

DAMA/LIBRA Annual Modulation "Signal"

- Highly radio-pure scintillating Nal(TI) crystals at Gran Sasso, Italy
- \bigcirc Annual modulation signal observed over 14 cycles at 9.3 σ significance
- 😟 No background/signal discrimination

Favored regions excluded by other direct detection experiments

Other Sources for DAMA/LIBRA Signal

Solution The DAMA/LIBRA signal might be composed of **neutrons** liberated in the material surrounding the detector by **two sources** [Davis, arXiv:1407.1052, PRL]

- Atmospheric muons: flux depends on the temperature of the atmosphere, peaked on June 21st
- Solar neutrinos: flux depends on the distance between the Earth and the Sun, peaked on January 4th

Solution: Klinger & Kudryavtsev, "muon-induced neutrons do not explain the DAMA data," arXiv:1503.07225, PRL

Zhao-Huan Yu (SYSU)

Direct and Indirect Detection of Dark Matter

Further Test: SABRE Project

SABRE: Sodium iodide with Active Background REjection

- Complementary tests in **both hemispheres**: one part in Gran Sasso (Italy) and one part in Stawell (Australia)
- Developing **low background** scintillating NaI(TI) crystals that exceed the radio-purity of DAMA/LIBRA
- A well-shielded active veto to reduce internal and external backgrounds

 ${}^{40}\text{K} \rightarrow {}^{40}\text{Ar}, \sim 11\%$ branch ratio

- 3 keV K shell X-ray, Auger e⁻
- Background at ~3 keV if γ escapes

1.46MeV γ can be detected by a veto. ⁴⁰K background can be rejected. [From E. Barberio's talk]

Low Mass Region

Zhao-Huan Yu (SYSU)

Direct and Indirect Detection of Dark Matter

Near Future Prospect

Neutrino Backgrounds

Direct detection experiments will be sensitive to **coherent neutrino-nucleus** scattering (CNS) due to astrophysical neutrinos [Billard *et al.*, arXiv:1307.5458, PRD]

- Solar neutrinos
 - *pp* neutrinos:
 - $p + p \rightarrow D + e^+ + v_e$ • ⁷Be neutrinos:
 - $e^- + {}^7\text{Be} \rightarrow {}^7\text{Li} + \nu_e$
 - pep neutrinos: $p + e^- + p \rightarrow D + v_e$
 - ⁸B neutrinos: ⁸B \rightarrow ⁸Be^{*} + e⁺ + ν_{e}
 - Hep neutrinos: ³He + $p \rightarrow {}^{4}$ He + e^{+} + v_{e}
- Atmospheric neutrinos

Cosmic-ray collisions in the atmosphere

• Diffuse supernova neutrino background (DSNB)

All supernova explosions in the past history of the Universe

Zhao-Huan Yu (SYSU)

Direct and Indirect Detection of Dark Matter

Going beyond the Neutrino Floor

Possible ways to reduce the impact of neutrino backgrounds:

- Reduction of systematic uncertainties on neutrino fluxes
- Utilization of different target nuclei [Ruppin et al., arXiv:1408.3581, PRD]
- Measurement of annual modulation [Davis, arXiv:1412.1475, JCAP]
- Measurement of nuclear recoil direction [O'Hare, et al., arXiv:1505.08061, PRD]

Zhao-Huan Yu (SYSU) Direct and Indirect Detection of Dark Matter 37 / 56

Indirect Detection

Zhao-Huan Yu (SYSU)

Indirect detection looks for stable products (γ rays, cosmic rays, neutrinos) from dark matter annihilation or decay (if DM is not totally stable) in space

Indirect Detection

Indirect Detection Experiments

Zhao-Huan Yu (SYSU)

Direct and Indirect Detection of Dark Matter

39 / 56

Indirect Detection

Dark Matter Source Function

Particle number per unit time per unit volume per unit energy interval of a stable species (γ , e^{\pm} , ν , p, \bar{p} , \cdots) produced from DM annihilation or decay:

(Annihilation)
$$Q_{\text{ann}}(\mathbf{x}, E) = \frac{\langle \sigma_{\text{ann}} v \rangle_{\text{tot}}}{2m_{\chi}^2} \rho^2(\mathbf{x}) \sum_i F_i \left(\frac{\mathrm{d}N}{\mathrm{d}E}\right)_i$$

(Decay) $Q_{\text{dec}}(\mathbf{x}, E) = \frac{1}{\tau_{\chi} m_{\chi}} \rho(\mathbf{x}) \sum_i B_i \left(\frac{\mathrm{d}N}{\mathrm{d}E}\right)_i$

Astrophysics factors Particle physics

factors

 $\rho(\mathbf{x})$: **DM mass density** at the source position \mathbf{x}

 $(dN/dE)_i$: number per unit energy interval from a single event in the channel i

 $\langle \sigma_{\rm ann} \nu \rangle_{\rm tot}$: thermal average of the total **annihilation cross section** multiplied by the relative velocity between the two incoming DM particles

 $F_i \equiv \langle \sigma_{ann} v \rangle_i / \langle \sigma_{ann} v \rangle_{tot}$: branching fraction of the annihilation channel *i*

 $\tau_{\chi} \equiv 1/\Gamma_{\chi}$: mean lifetime of the DM particle

 $B_i \equiv \Gamma_i / \Gamma_{\chi}$: branching ratio of the decay channel *i*

Dark Matter

Direct Detection

Indirect Detection

γ rays from DM: Continuous Spectrum

DM pair annihilation or decay into e^+e^- , $\mu^+\mu^-$, $\tau^+\tau^-$, $q\bar{q}$, W^+W^- , Z^0Z^0 , h^0h^0 \downarrow γ -ray emission from final state radiation or particle decays

- Cut-off energy:
 - m_{χ} for DM annihilation $m_{\chi}/2$ for DM decay
- More promising to look at DM-dominated regions:
 Galactic Center
 Galactic halo
 dwarf galaxies
 clusters of galaxies

Zhao-Huan Yu (SYSU)

Direct and Indirect Detection of Dark Matter

γ -ray Observation of Dwarf Galaxies

- The space experiment Fermi-LAT searched for γ-ray emission from dwarf spheroidal satellite galaxies of the Milky Way and found no significant signal
- Based on the 6-year data, upper limits on DM annihilation cross section are given

Zhao-Huan Yu (SYSU)

Direct and Indirect Detection of Dark Matter

42 / 56

GeV Excess at the Galactic Center?

Since 2009, several groups reported an excess of continuous spectrum γ -rays in the Fermi-LAT data after subtracting well-known astrophysical backgrounds, locating in the Galactic Center (GC) region and peaking at a few GeV

Left: raw γ -ray maps Right: residual maps after subtracting the Galactic diffuse model, 20 cm template, point sources, and isotropic template

Interpretation with Dark Matter Annihilation

[Cirelli et al., arXiv:1407.2173, JCAP]

Direct and Indirect Detection of Dark Matter

Indirect Detection

γ rays from DM: Line Spectrum

be only $\sim 10^{-4} - 10^{-1}$

Indirect Detection

γ rays from DM: Line Spectrum

A γ -ray Line Signal at the Galactic Center?

- Using the 3.7-year Fermi-LAT γ -ray data, several analyses showed that there might be evidence of a monochromatic γ -ray line at energy ~ 130 GeV, originating from the Galactic center region (about $3 4\sigma$)
- It may be explained by DM annihilation with $\langle \sigma_{\rm ann} v \rangle \sim 10^{-27} \, {\rm cm}^3 \, {\rm s}^{-1}$

Dark Matter

Fermi-LAT Official Results: Not Confirmed with More Data

• 3.7-year data

The most significant fit occurred at $E_{\gamma} = 133$ GeV and had a **local** significance of 3.3 σ , translating to a global significance of 1.6 σ

Fermi-LAT Official Results: Not Confirmed with More Data

• 3.7-year data

The most significant fit occurred at $E_{\gamma} = 133$ GeV and had a **local** significance of 3.3 σ , translating to a global significance of 1.6 σ

• 5.8-year data

The local significance has dropped to 0.72σ

Indirect Detection

Neutrinos from DM

♥ Dark matter may be captured and accumulated at the core of the Sun ♀ (or the Earth ●), producing high energy neutrinos that could freely go out

Change Rate of the number of DM particles in the Sun:

$$\frac{\mathrm{d}N_{\chi}}{\mathrm{d}t} = C_{\odot}(\sigma_{\chi\mathrm{H}}, \sigma_{\chi\mathrm{He}}) - A_{\odot}(\sigma_{\mathrm{ann}})N_{\chi}^{2}$$

Capture rate C_{\odot} depends on DM scattering on Hydrogen and Helium

Annihilation rate $A_{\odot} = \langle \sigma_{ann} v \rangle / V_{eff}$ depends on DM annihilation as well as the effective volume of the solar core

The age of the Sun is long enough (~ 4.6 billion years) to make the capture and annihilation processes reach **equilibrium**: $dN_{\chi}/dt = 0$

Dark Matter

Zhao-Huan Yu (SYSU)

Direct Detection

Indirect Detection

IceCube: South Pole Neutrino Observatory

Direct and Indirect Detection of Dark Matter

49 / 56

Dark Matter

Searches for Neutrinos from DM Annihilation within the Sun

- No signal detected in searches for neutrinos with energies of ${\rm GeV-TeV}$ from DM annihilation at the solar core
- Assuming equilibrium in the capture and annihilation processes, the constraints can be converted to those on the DM scattering cross section

Cosmic Rays from DM

- After produced in sources, Galactic cosmic rays diffuse in the interstellar space, suffering from several **propagation effects** before they arrive at the Earth: diffusion, energy losses, convection, reacceleration, spallation, ...
- Unlike γ rays and neutrinos, cosmic rays typically do not contain direction information of their sources

[Maurin et al., astro-ph/0212111]

Cosmic Ray Propagation Equation

The propagation equation for Galactic cosmic rays is

$$\frac{\partial \psi}{\partial t} = \mathbf{Q}(\mathbf{x}, p) + \nabla \cdot (D_{xx} \nabla \psi - \mathbf{V}_{c} \psi) + \frac{\partial}{\partial p} \left[p^{2} D_{pp} \frac{\partial}{\partial p} \left(\frac{\psi}{p^{2}} \right) \right] \\ - \frac{\partial}{\partial p} \left[\dot{p} \psi - \frac{p}{3} (\nabla \cdot \mathbf{V}_{c}) \psi \right] - \frac{\psi}{\tau_{f}} - \frac{\psi}{\tau_{r}}$$

$$\begin{split} \psi &= \psi(\mathbf{x}, p, t): \text{ cosmic ray density per momentum interval} \\ Q(\mathbf{x}, p): \text{ cosmic ray source term} & D_{xx}: \text{ spatial diffusion coefficient} \\ D_{pp}: \text{ diffusion coefficient in the momentum space for reacceleration} \\ \mathbf{V}_c: \text{ convection velocity} & \dot{p} \equiv \mathrm{d}p/\mathrm{d}t: \text{ momentum loss rate} \\ \tau_f: \text{ fragmentation time scale} & \tau_r: \text{ radioactive decay time scale} \end{split}$$

Numerical tools

- GALPROP: https://galprop.stanford.edu
- DRAGON: https://github.com/cosmicrays/DRAGON

Cosmic-ray Positron Excess

- In 2008, the PAMELA experiment found an unexpected increase in the cosmic-ray positron fraction with E ≥ 10 GeV
- In 2013, the AMS-02 experiment confirmed such a positron excess

Indirect Detection

Interpretation: Dark Matter vs Pulsar

First Result from DAMPE

- In November 2017, DAMPE (悟空) collaboration released their first measurement of the cosmic-ray spectrum of electrons and positrons
- This measurement found a spectral break at $\sim 0.9 \text{ TeV}$

Summary

- **Dark matter** connects our knowledge of the Universe from the **largest** to the **smallest** scales
- Although several anomalous observations have been found in direct and indirect searches, there is no absolutely solid DM detection signal so far
- DM detection sensitivities are being improved quickly; it is very promising to detect robust DM signals in the near future

Summary

- **Dark matter** connects our knowledge of the Universe from the **largest** to the **smallest** scales
- Although several anomalous observations have been found in direct and indirect searches, there is **no absolutely solid DM detection signal so far**
- DM detection sensitivities are being improved quickly; it is very promising to detect robust DM signals in the near future

Thank you!

