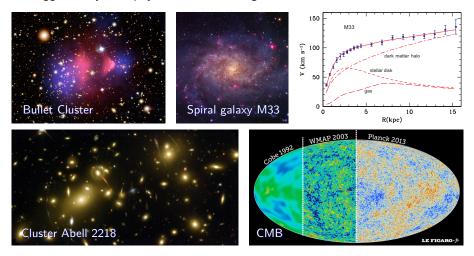
Detection of Dark Matter

Zhao-Huan Yu (余钊焕)

School of Physics, Sun Yat-Sen University http://yzhxxzxy.github.io



Academic Salon in School of Physics Sun Yat-Sen University, Guangzhou May 17, 2018

Dark Matter in the Universe

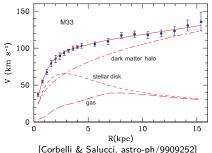
Dark matter (DM) makes up most of the matter component in the Universe, as suggested by astrophysical and cosmological observations

Coma Cluster (后发座星系团)

Coma Cluster (后发座星系团)

In 1933, Fritz Zwicky found that the **velocity dispersion** of galaxies in the Coma cluster was far too large to be supported by the luminous matter

Typical spiral galaxy: $\mathcal{O}(10)\Upsilon_{\odot}$


Indirect Detection

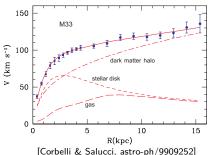
Spiral Galaxies: Rotation Curves

In the 1970s, Vera Rubin and her collaborators measured the rotation curves of spiral galaxies and also found evidence for non-luminous matter

Spiral Galaxies: Rotation Curves

00000000000000000

Dark Matter


In the 1970s, Vera Rubin and her collaborators measured the rotation curves of spiral galaxies and also found evidence for non-luminous matter

According to Newton's law, the relation between the rotation velocity ν and the mass M(r) within radius r should be

$$\frac{v^2}{r} = \frac{G_N M(r)}{r^2}$$

$$M(r) = \text{constant} \implies v \propto r^{-1/2}$$

 $M(r) \propto r \implies v = \text{constant}$

Unexpected movement of Uranus

Unexpected movement of **Uranus**

↓

Perturbed by Neptune (discovered in 1846)

Indirect Detection

How Can We Explain an Anomalous Phenomenon?

Unexpected movement of Uranus

Perturbed by Neptune (discovered in 1846)

Search for new objects/substances responsible for it!

Unexpected movement of **Uranus**

Perturbed by Neptune (discovered in 1846)

Search for new objects/substances responsible for it!

Anomalous perihelion precession of Mercury

Unexpected movement of **Uranus**

Perturbed by Neptune (discovered in 1846)

Search for new objects/substances responsible for it!

Anomalous perihelion precession of **Mercury**↓

Update Newtonian mechanics to **general relativity**

Unexpected movement of **Uranus**

Perturbed by Neptune (discovered in 1846)

Search for new objects/substances responsible for it!

Anomalous perihelion precession of **Mercury**↓

Update Newtonian mechanics to **general relativity**

Modify known physical laws!

[Milgrom, ApJ, 1983]

How about the Anomalous Phenomena Here?

Difficult to coherently explain data at all scales with one model

How about the Anomalous Phenomena Here?

Modify physical laws ⇒ **MOdified Newtonian Dynamics** (MOND)

[Milgrom, ApJ, 1983]

Difficult to coherently explain data at all scales with one model

Consider new objects ⇒ MAssive Compact Halo Objects (MACHOs)

(baryonic dark matter: brown dwarfs, jupiters, stellar black-hole remnants, white dwarfs, neutron stars, ...)

MACHO fraction in the Galactic dark matter halo: < 8% (95% C.L.)

[EROS-2 coll., astro-ph/0607207]

How about the Anomalous Phenomena Here?

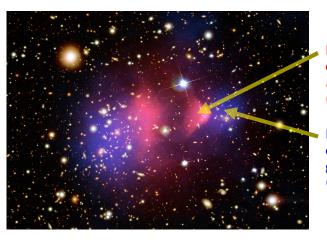
Modify physical laws ⇒ **MOdified Newtonian Dynamics** (MOND)

[Milgrom, ApJ, 1983]

Difficult to coherently explain data at all scales with one model

 \P Consider new objects \Rightarrow MAssive Compact Halo Objects (MACHOs)

(baryonic dark matter: brown dwarfs, jupiters, stellar black-hole remnants, white dwarfs, neutron stars, ...)

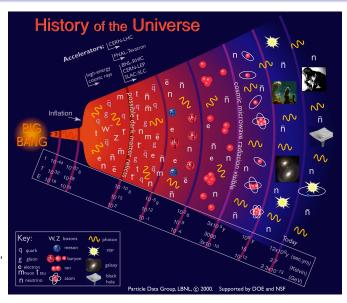

MACHO fraction in the Galactic dark matter halo: < 8% (95% C.L.)

[EROS-2 coll., astro-ph/0607207]

Consider new substances ⇒ Nonbaryonic Dark Matter

(not constituted by baryons)

Bullet Cluster: Disfavor MOND


Fluid-like X-ray emitting plasma, i.e., gas (visible matter)

Mass distribution observed by weak gravitational lensing (DM dominated)

An 8σ significance **spatial offset** of the center of the **total mass** from the center of the **baryonic mass peaks** cannot be explained with an alteration of the gravitational force law [Clowe *et al.*, astro-ph/0608407]

Big Bang Cosmology

- ♠ ~ 13.8 billion years ago, the Universe was extremely hot, dense, and homogeneous
- Everything was in thermal equilibrium and interacted with each other
- As the Universe expanded and cooled down; its constituents decoupled from the thermal bath one by one
- Then nuclei, atoms, stars, and galaxies were formed

Structure Formation: Hot, Cold, and Warm Dark Matter

Small initial fluctuations + Gravitational instability

⇒ Decoupled matter generates cosmological structures

Baryonic matter decoupled too late

Only baryonic matter ⇒ Galaxies would not be formed!

⇒ Needs **nonbaryonic dark matter** which decoupled much earlier

Structure Formation: Hot, Cold, and Warm Dark Matter

Small initial fluctuations + Gravitational instability

⇒ Decoupled matter generates cosmological structures

Baryonic matter decoupled too late

Dark Matter

Only baryonic matter \Rightarrow Galaxies would not be formed!

⇒ Needs **nonbaryonic dark matter** which decoupled much earlier

Hot dark matter (such as neutrinos): relativistic when it decoupled

⇒ structure forms by fragmentation (top-down)

Cold dark matter (CDM): **nonrelativistic** when it decoupled ⇒ structure forms hierarchically (bottom-up)

Galaxies are older than clusters ⇒ Favors cold dark matter theory

Structure Formation: Hot, Cold, and Warm Dark Matter

Small initial fluctuations + Gravitational instability

⇒ Decoupled matter generates cosmological structures

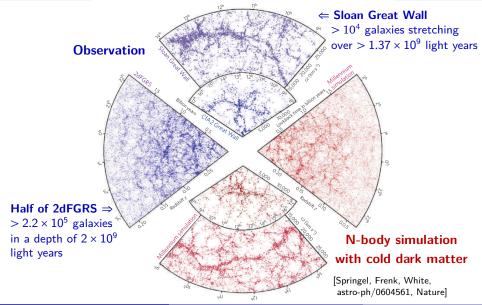
Baryonic matter decoupled too late

Only baryonic matter \Rightarrow Galaxies would not be formed!

⇒ Needs **nonbaryonic dark matter** which decoupled much earlier

Hot dark matter (such as neutrinos): relativistic when it decoupled

⇒ structure forms by fragmentation (top-down)

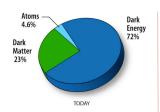

Cold dark matter (CDM): nonrelativistic when it decoupled

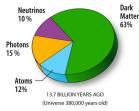
⇒ structure forms hierarchically (bottom-up)

Galaxies are older than clusters ⇒ Favors cold dark matter theory

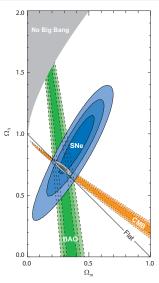
Milky Way dwarf satellites: ~ 60 (observed) vs. ~ 500 (CDM predicted) "Missing satellites problem" \Rightarrow A component of warm dark matter?

Galaxy Distribution: Observation vs Simulation


Standard Cosmology: ACDM Model


ΛCDM: the standard cosmological model

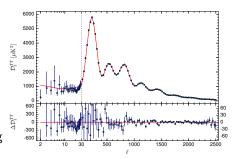
- Cosmological constant Λ (dark energy)
- Cold dark matter (CDM)

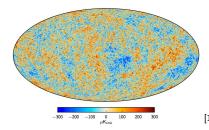

The evolution of the Universe is governed by the **Friedmann equation**

$$\frac{k}{H^2R^2} = \Omega_{\Lambda} + \Omega_{\rm m} + \Omega_{\rm r} - 1$$

[WMAP Science Team]

[Kowalski et al., 0804.4142]


Cosmic Microwave Background (CMB)


 $t \sim 380~000 \text{ yr}, T \sim 3000 \text{ K}$ Electrons + Protons → Hydrogen Atoms Photons decoupled

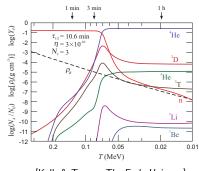
cools ↓ down

Today, ~ 2.7 K microwave background

Cosmological parameters, e.g., Ω_{Λ} , Ω_{c} , and $\Omega_{\rm b}$, can be determined by measuring the CMB anisotropy power spectrum

Planck 2015 [1502.01582, 1502.01589]

Cold DM (25.8%) $\Omega_c h^2 = 0.1186 \pm 0.0020$


Baryons (4.8%)

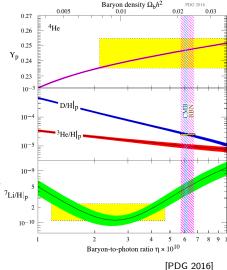
 $\Omega_{\rm b}h^2 = 0.02226 \pm 0.00023$

Dark energy (69.3%)

 $\Omega_{\Lambda} = 0.692 \pm 0.012$

Big Bang Nucleosynthesis (BBN): $t \sim 1 \text{ sec} - 1 \text{ hour}$

Dark Matter

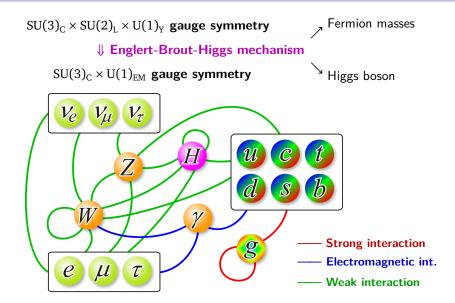

000000000000000000

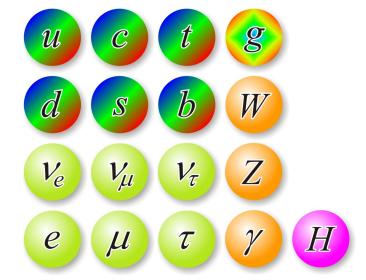
[Kolb & Turner, The Early Universe]

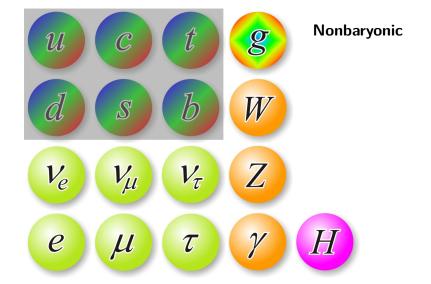
Primordial abundances of light elements

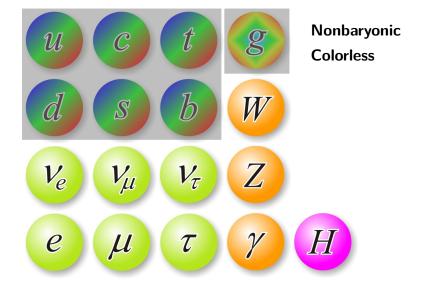
Infer the baryon density Ω_b (consistent with CMB observations)

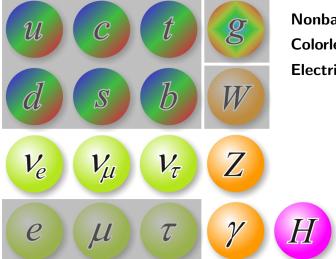
The majority of matter is nonbaryonic

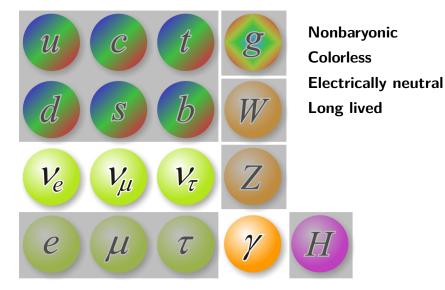


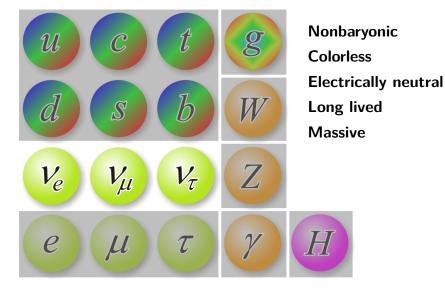

Inferred Properties of Dark Matter

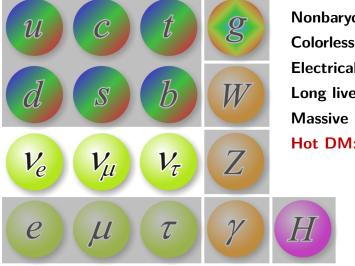

- Dark (electrically neutral): no light emitted from it
- Nonbaryonic: BBN & CMB observations
- Long lived: survived from early eras of the Universe to now
- Colorless: otherwise, it would bind with nuclei
- Cold: structure formation theory
- Abundance: more than 80% of all matter in the Universe


$$\rho_{\rm DM} \sim 0.3 - 0.4 \; {\rm GeV/cm^3}$$
 near the earth


Standard Model (SM) of Particle Physics

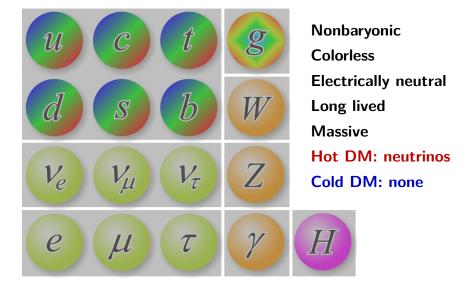





Nonbaryonic
Colorless
Electrically neutral

Dark Matter

0000000000000000


Nonbaryonic

Electrically neutral

Long lived

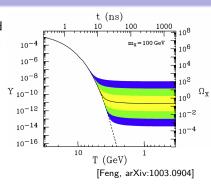
Hot DM: neutrinos

Indirect Detection

Dark Matter

00000000000000000

Dark Matter


00000000000000000

If DM particles (χ) were thermally produced in the early Universe, their relic abundance would be determined by the annihilation cross section $\langle \sigma_{ann} v \rangle$:

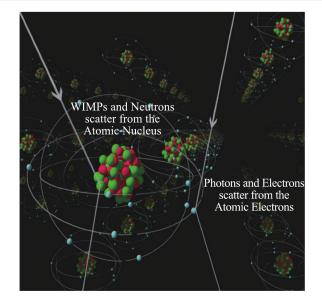
$$\Omega_\chi h^2 \simeq \frac{3\times 10^{-27}~{\rm cm}^3\,{\rm s}^{-1}}{\langle\sigma_{\rm ann}\nu\rangle}$$

Observation value $\Omega_{\gamma} h^2 \simeq 0.1$

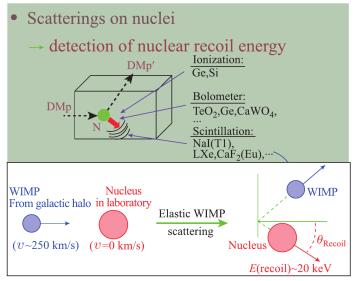
$$\Rightarrow$$
 $\langle \sigma_{\rm ann} \nu \rangle \simeq 3 \times 10^{-26} \ \rm cm^3 \, s^{-1}$

Assuming the annihilation process consists of two weak interaction vertices with the SU(2)_L gauge coupling $g \simeq 0.64$, for $m_{\gamma} \sim \mathcal{O}(\text{TeV})$ we have

$$\langle \sigma_{\rm ann} \nu \rangle \sim \frac{g^4}{16\pi^2 m_{\gamma}^2} \sim \mathcal{O}(10^{-26}) \ {\rm cm}^3 \, {\rm s}^{-1}$$


A very attractive class of DM candidates:

Weakly interacting massive particles (WIMPs)


Experimental Approaches to Dark Matter

WIMP Scattering off Atomic Nuclei

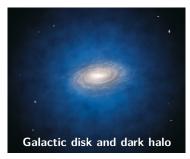
Direct Detection

[Bing-Lin Young, Front. Phys. 12, 121201 (2017)]

Dark Matter

During the collapse process which formed the Galaxy, WIMP velocities were "thermalized" by fluctuations in the gravitational potential, and WIMPs have a Maxwell-Boltzmann velocity distribution in the Galactic rest frame:

$$\tilde{f}(\tilde{\mathbf{v}})d^{3}\tilde{v} = \left(\frac{m_{\chi}}{2\pi k_{\rm B}T}\right)^{3/2} \exp\left(-\frac{m_{\chi}\tilde{v}^{2}}{2k_{\rm B}T}\right)d^{3}\tilde{v} = \frac{e^{-\tilde{v}^{2}/v_{0}^{2}}}{\pi^{3/2}v_{0}^{3}}d^{3}\tilde{v}, \quad v_{0}^{2} \equiv \frac{2k_{\rm B}T}{m_{\chi}}$$


$$\langle \tilde{\mathbf{v}} \rangle = \int \tilde{\mathbf{v}} \tilde{f}(\tilde{\mathbf{v}}) d^3 \tilde{v} = \mathbf{0}, \quad \left\langle \tilde{v}^2 \right\rangle = \int \tilde{v}^2 \tilde{f}(\tilde{\mathbf{v}}) d^3 \tilde{v} = \frac{3}{2} v_0^2$$

Speed distribution:
$$\tilde{f}(\tilde{v})d\tilde{v} = \frac{4\tilde{v}^2}{\sqrt{\pi}v_0^3}e^{-\tilde{v}^2/v_0^2}d\tilde{v}$$

For an **isothermal** halo, the local value of v_0 equals to the rotational speed of the Sun:

$$v_0 = v_{\odot} \simeq 220 \text{km/s}$$

[Binney & Tremaine, Galactic Dynamics, Chapter 4]

[Credit: ESO/L. Calcada]

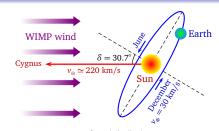
Velocity dispersion: $\sqrt{\langle \tilde{v}^2 \rangle} = \sqrt{3/2} v_0 \simeq 270 \text{km/s}$

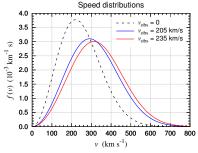
Earth Rest Frame

Dark Matter

The WIMP velocity distribution $f(\mathbf{v})$ seen by an observer on the Earth can be derived via Galilean transformation

$$\tilde{\mathbf{v}} = \mathbf{v} + \mathbf{v}_{\text{obs}}, \quad \mathbf{v}_{\text{obs}} = \mathbf{v}_{\odot} + \mathbf{v}_{\oplus}$$


Velocity distribution: $f(\mathbf{v}) = \tilde{f}(\mathbf{v} + \mathbf{v}_{\text{obs}})$ **Speed distribution:**


$$f(v)dv = \frac{4v^2}{\sqrt{\pi}v_0^3} \exp\left(-\frac{v^2 + v_{\text{obs}}^2}{v_0^2}\right)$$
$$\times \frac{\tilde{v}_0^2}{2vv_{\text{obs}}} \sinh\left(\frac{2vv_{\text{obs}}}{v_0^2}\right) dv$$

Since $v_{\oplus} \ll v_{\odot}$, we have $(\omega = 2\pi/\text{year})$

$$\begin{split} \nu_{\rm obs}(t) &\simeq \nu_{\odot} + \nu_{\oplus} \sin \delta \cos[\omega(t-t_0)] \\ &\simeq 220 \text{ km/s} + 15 \text{ km/s} \cdot \cos[\omega(t-t_0)] \end{split}$$

Annual modulation signal peaked on June 2 [Freese et al., PRD 37, 3388 (1988)]

Event Rate

Event rate per unit time per unit energy interval:

$$\frac{dR}{dE_{\rm R}} = N_A \frac{\rho_{\oplus}}{m_{\chi}} \int_{\nu_{\rm min}}^{\nu_{\rm max}} d^3 \nu f(\mathbf{v}) \nu \frac{d\sigma_{\chi A}}{dE_{\rm R}}$$

Astrophysics factors
Particle physics factors
Detector factors

 N_A : target nucleus number

 $\rho_{\oplus} \simeq 0.4 \text{ GeV/cm}^3$: DM mass density around the Earth

 $(
ho_\oplus/m_\chi$ is the DM particle **number density** around the Earth)

 $\sigma_{\chi A}$: DM-nucleus scattering cross section

Maximal velocity $v_{\rm max}$: determined by the DM escape velocity $v_{\rm esc}$

 $(v_{\rm esc} \simeq 544 \ {\rm km/s} \ [{\rm Smith} \ {\it et al.}, \ {\rm MNRAS} \ 379, \ 755])$

Cross Section Dependence on Nucleus Spin

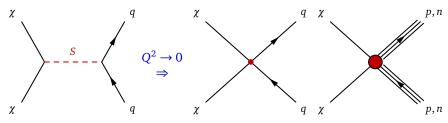
There are two kinds of DM-nucleus scattering

Spin-independent (SI) cross section:
$$\sigma_{\chi A}^{\rm SI} \propto \mu_{\chi A}^2 [ZG_p + (A-Z)G_n]^2$$

Spin-dependent (SD) cross section:
$$\sigma_{\chi A}^{\rm SD} \propto \mu_{\chi A}^2 \frac{J_A + 1}{J_A} (S_p^A G_p' + S_n^A G_n')^2$$

Nucleus properties: mass number A, atomic number Z, spin J_A , expectation value of the proton (neutron) spin content in the nucleus \mathcal{S}_p^A (\mathcal{S}_n^A) and $\mathcal{G}_p^{(\prime)}$: DM effective couplings to the proton and the neutron

- $Z \simeq A/2 \implies \sigma_{\chi A}^{\rm SI} \propto A^2[(G_p + G_n)/2]^2$ Strong coherent enhancement for heavy nuclei
- Spins of nucleons tend to cancel out among themselves:
 - $S_N^A \simeq 1/2$ (N = p or n) for a nucleus with an **odd** number of N
 - $S_N^A \simeq 0$ for a nucleus with an **even** number of N


Three Levels of Interaction

- As a variety of target nuclei are used in direct detection experiments, results are usually compared with each other at the DM-nucleon level
- The DM-nucleon level is related to the DM-parton level via form factors, which describe the probabilities of finding partons inside nucleons
- Relevant partons involve not only valence quarks, but also sea quarks and gluons

Zero Momentum Transfer Limit

- As the momentum transfer is typically much smaller than the underlying energy scale (e.g., mediator mass), the zero momentum transfer limit is a good approximation for calculation
- In this limit, the mediator field can be integrated out, and the interaction can be described by effective operators in effective field theory

Scalar mediator propagator:

$$\frac{i}{Q^2 - m_S^2} \quad \Rightarrow \quad -\frac{i}{m_S^2}$$

$$\text{Lagrangian:} \quad \mathcal{L}_{\text{int}} = g_{\chi} S \bar{\chi} \chi + g_q S \bar{q} q \quad \Rightarrow \quad \mathcal{L}_{\text{eff}} = G_{\text{eff}} \bar{\chi} \chi \bar{q} q, \quad G_{\text{eff}} = \frac{g_{\chi} g_q}{m_{\text{c}}^2}$$

Effective Operators for DM-nucleon interactions

Assuming the DM particle is a **Dirac fermion** χ and using **Dirac fields** p and n to describe the proton and the neutron, the effective Lagrangian reads

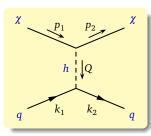
$$\mathcal{L}_{\text{eff},N} = \sum_{N=p,n} \sum_{ij} G_{N,ij} \bar{\chi} \Gamma^i \chi \bar{N} \Gamma_j N, \quad \Gamma^i, \Gamma^j \in \{1, i\gamma_5, \gamma^\mu, \gamma^\mu \gamma_5, \sigma^{\mu\nu}\}$$

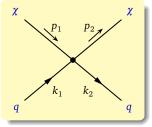
[Bélanger et al., arXiv:0803.2360, Comput.Phys.Commun.]

- Lorentz indices in Γ^i and Γ_j should be contracted in pair
- Effective couplings $G_{N,ij}$ have a mass dimension of -2: $[G_{N,ij}] = [Mass]^{-2}$
- $\bar{\chi} \chi \bar{N} N$ and $\bar{\chi} \gamma^{\mu} \chi \bar{N} \gamma_{\mu} N$ lead to **SI** DM-nucleon scattering
- $\bar{\chi}\gamma^{\mu}\gamma_5\chi\bar{N}\gamma_{\mu}\gamma_5N$ and $\bar{\chi}\sigma^{\mu\nu}\chi\bar{N}\sigma_{\mu\nu}N$ lead to SD DM-nucleon scattering
- The following operators lead to scattering cross sections $\sigma_{\chi N} \propto |Q^2|$: $\bar{\chi} i \gamma_5 \chi \bar{N} i \gamma_5 N$, $\bar{\chi} \chi \bar{N} i \gamma_5 N$, $\bar{\chi} i \gamma_5 \chi \bar{N} N$, $\bar{\chi} \gamma^\mu \chi \bar{N} \gamma_\mu \gamma_5 N$, $\bar{\chi} \gamma^\mu \gamma_5 \chi \bar{N} \gamma_\mu N$
- For a Majorana fermion χ instead, we have $\bar{\chi}\gamma^{\mu}\chi=0$ and $\bar{\chi}\sigma^{\mu\nu}\chi=0$, and hence the related operators vanish

Higgs Portal for Majorana Fermionic DM

Interactions for a **Majorana fermion** χ , the **SM Higgs boson** h, and quarks q:


$$\begin{split} \mathcal{L}_{\mathrm{DM}} &\supset \frac{1}{2} g_{\chi} \mathbf{h} \bar{\chi} \chi \\ \mathcal{L}_{\mathrm{SM}} &\supset -\sum_{q} \frac{m_{q}}{\nu} \mathbf{h} \bar{q} q, \quad q = d, u, s, c, b, t \end{split}$$


The amplitude for $\chi(p_1) + q(k_1) \rightarrow \chi(p_2) + q(k_2)$:

$$i\mathcal{M} = ig_{\chi}\bar{u}(p_2)u(p_1)\frac{i}{Q^2 - m_h^2} \left(-i\frac{m_q}{\nu}\right)\bar{u}(k_2)u(k_1)$$

$$i\mathcal{M} = -i\frac{g_{\chi}m_q}{vm_h^2}\bar{u}(p_2)u(p_1)\bar{u}(k_2)u(k_1)$$

$$\mathcal{L}_{\mathrm{eff},q} = \sum_{q} G_{\mathrm{S},q} \bar{\chi} \chi \bar{q} q, \quad G_{\mathrm{S},q} = -\frac{g_{\chi} m_{q}}{2 \nu m_{h}^{2}}$$

Effective Lagrangian: Scalar Type

Scalar-type effective Lagrangian for a spin-1/2 fermion χ :

$$\mathcal{L}_{S,q} = \sum_{q} G_{S,q} \bar{\chi} \chi \bar{q} q \quad \Rightarrow \quad \mathcal{L}_{S,N} = \sum_{N=p,n} G_{S,N} \bar{\chi} \chi \bar{N} N$$

$$G_{S,N} = m_N \left(\sum_{q=u,d,s} \frac{G_{S,q}}{m_q} f_q^N + \sum_{q=c,b,t} \frac{G_{S,q}}{m_q} f_Q^N \right)$$

The second term accounts for DM interactions with gluons through loops of heavy quarks (c, b, and t): $f_Q^N = \frac{2}{27} \left(1 - \sum_{q=u,d,s} f_q^N\right)$

Form factor f_q^N is the contribution of q to m_N : $\langle N | m_q \bar{q} q | N \rangle = f_q^N m_N$ $f_u^p \simeq 0.020, \quad f_d^p \simeq 0.026, \quad f_u^n \simeq 0.014, \quad f_d^n \simeq 0.036, \quad f_s^p = f_s^n \simeq 0.118$ [Ellis et al., arXiv:hep-ph/0001005, PLB]

The scalar type induces SI DM-nucleon scattering with a cross section of

$$\sigma_{\chi N}^{\rm SI} = \frac{n_\chi}{\pi} \mu_{\chi N}^2 G_{{\rm S},N}^2, \quad \mu_{\chi N} \equiv \frac{m_\chi m_N}{m_\chi + m_N}, \quad n_\chi = \begin{cases} 1, & \text{for Dirac fermion } \chi \\ 4, & \text{for Majorana fermion } \chi \end{cases}$$

Dark Matter

Interactions for a Majorana fermion χ , the Z boson, and quarks q:

$$\mathcal{L}_{\rm DM} \supset \frac{1}{2} g_\chi \frac{Z_\mu \bar{\chi} \gamma^\mu \gamma_5 \chi}{,} \quad \mathcal{L}_{\rm SM} \supset \frac{g}{2c_W} \frac{Z_\mu}{Z_\mu} \sum_q \bar{q} \gamma^\mu (g_V^q - g_A^q \gamma_5) q$$

$$g_{\mathrm{V}}^{u_{i}} = \frac{1}{2} - \frac{4}{3} s_{\mathrm{W}}^{2}, \quad g_{\mathrm{V}}^{d_{i}} = -\frac{1}{2} + \frac{2}{3} s_{\mathrm{W}}^{2}, \quad g_{\mathrm{A}}^{u_{i}} = \frac{1}{2} = -g_{\mathrm{A}}^{d_{i}}, \quad c_{\mathrm{W}} \equiv \cos \theta_{\mathrm{W}}, \quad s_{\mathrm{W}} \equiv \sin \theta_{\mathrm{W}}$$

$$Z$$
 boson propagator $\frac{-i}{Q^2 - m_Z^2} \left(g_{\mu\nu} - \frac{Q_\mu Q_\nu}{m_Z^2} \right) \xrightarrow{Q^2 \to 0} \xrightarrow{i} \frac{i}{m_Z^2} g_{\mu\nu}$

Effective Lagrangian in the zero momentum transfer limit:

$$\mathcal{L}_{\mathrm{eff},q} = \sum_{q} ar{\chi} \gamma^{\mu} \gamma_{5} \chi (G_{\mathrm{A},q} ar{q} \gamma_{\mu} \gamma_{5} q + G_{\mathrm{AV},q} ar{q} \gamma_{\mu} q), \quad G_{\mathrm{A},q} = rac{g_{\chi} g g_{\mathrm{A}}^{q}}{4 c_{\mathrm{W}} m_{Z}^{2}}$$

 $G_{{
m AV},q}=-rac{g_\chi g g_\chi^{
m V}}{4c_{\cdots}m^2}$ leads to $\sigma_{\chi N}\propto |Q^2|$ and can be neglected for direct detection

Effective Lagrangian: Axial Vector Type

Axial-vector-type effective Lagrangian for a spin-1/2 fermion χ :

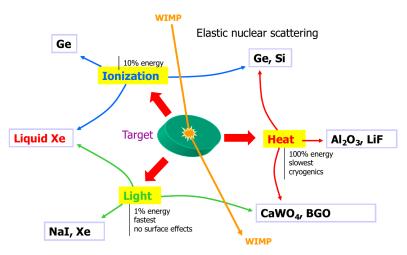
$$\begin{split} \mathcal{L}_{\mathrm{A},q} &= \sum_{q} G_{\mathrm{A},q} \bar{\chi} \gamma^{\mu} \gamma_{5} \chi \bar{q} \gamma_{\mu} \gamma_{5} q \quad \Rightarrow \quad \mathcal{L}_{\mathrm{A},N} = \sum_{N=p,n} G_{\mathrm{A},N} \bar{\chi} \gamma^{\mu} \gamma_{5} \chi \bar{N} \gamma_{\mu} \gamma_{5} N \\ G_{\mathrm{A},N} &= \sum_{q=\mu,d,s} G_{\mathrm{A},q} \Delta_{q}^{N}, \quad 2 \Delta_{q}^{N} s_{\mu} \equiv \langle N | \bar{q} \gamma_{\mu} \gamma_{5} q | N \rangle \end{split}$$

Form factors Δ_q^N account the contributions of quarks and anti-quarks to the nucleon spin vector s_μ , and can be extracted from lepton-proton scattering data:

$$\Delta_u^p = \Delta_d^n \simeq 0.842, \quad \Delta_d^p = \Delta_u^n \simeq -0.427, \quad \Delta_s^p = \Delta_s^n \simeq -0.085$$
 [HERMES coll., arXiv:hep-ex/0609039, PRD]

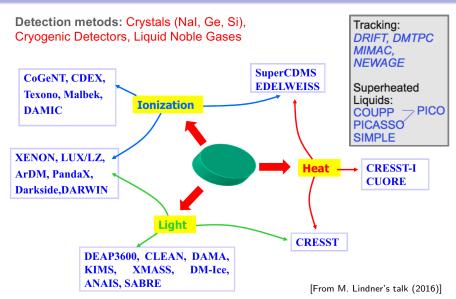
Neutron form factors are related to proton form factors by isospin symmetry

The axial vector type induces **SD** DM-nucleon scattering:


$$\sigma_{\chi N}^{\rm SD} = \frac{3n_{\chi}}{\pi} \mu_{\chi N}^2 G_{\rm A,N}^2, \quad n_{\chi} = \begin{cases} 1, & \text{for Dirac fermion } \chi \\ 4, & \text{for Majorana fermion } \chi \end{cases}$$

Effective Operators for DM-quark Interactions

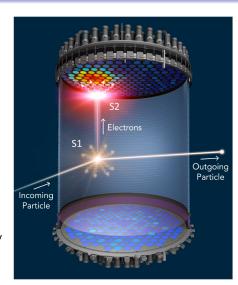
	Spin-1/2 DM	Spin-0 DM
SI	$ar{\chi}\chiar{q}q,\;\;ar{\chi}\gamma^{\mu}\chiar{q}\gamma_{\mu}q$	$\chi^*\chiar{q}q,\;\;(\chi^*i\overleftrightarrow{\partial^\mu}\chi)ar{q}\gamma_\mu q$
SD	$ar{\chi} \gamma^\mu \gamma_5 \chi ar{q} \gamma_\mu \gamma_5 q, \;\; ar{\chi} \sigma^{\mu u} \chi ar{q} \sigma_{\mu u} q$	
$\sigma_{\chi N} \propto Q^2 $	$ar{\chi}$ i $\gamma_5\chiar{q}$ i γ_5q , $ar{\chi}\chiar{q}$ i γ_5q $ar{\chi}$ i $\gamma_5\chiar{q}q$, $ar{\chi}\gamma^\mu\chiar{q}\gamma_\mu\gamma_5q$ $ar{\chi}\gamma^\mu\gamma_5\chiar{q}\gamma_\mu q$, $arepsilon^{\mu u}\rho\sigma$ $ar{\chi}\sigma^{\mu u}\chiar{q}\sigma_{ ho\sigma}q$	$\chi^* \chi ar{q} i \gamma_5 q \ (\chi^* i \overleftarrow{\partial^\mu} \chi) ar{q} \gamma_\mu \gamma_5 q$
	Spin-3/2 DM	Spin-1 DM
SI	$ar{\chi}^{\mu}\chi_{\mu}ar{q}q,\;\;ar{\chi}^{ u}\gamma^{\mu}\chi_{ u}ar{q}\gamma_{\mu}q$	$\chi^*_{\mu}\chi^{\mu}\bar{q}q, (\chi^*_{\nu}i\overleftrightarrow{\partial^{\mu}}\chi^{\nu})\bar{q}\gamma_{\mu}q$
SD	$ar{\chi}^{ u}\gamma^{\mu}\gamma_{5}\chi_{ u}ar{q}\gamma_{\mu}\gamma_{5}q, \ \ ar{\chi}^{ ho}\sigma^{\mu u}\chi_{ ho}ar{q}\sigma_{\mu u}q \ i(ar{\chi}^{\mu}\chi^{ u}-ar{\chi}^{ u}\chi^{\mu})ar{q}\sigma_{\mu u}q$	$i(\chi_{\mu}^{*}\chi_{\nu} - \chi_{\nu}^{*}\chi_{\mu})\bar{q}\sigma^{\mu\nu}q$ $\varepsilon^{\mu\nu\rho\sigma}(\chi_{\mu}^{*}\overleftrightarrow{\partial_{\nu}}\chi_{\rho})\bar{q}\gamma_{\sigma}\gamma_{5}q$
$\sigma_{\chi N} \propto Q^2 $	$\begin{split} \bar{\chi}^{\mu}_{i}\gamma_{5}\chi_{\mu}\bar{q}i\gamma_{5}q, \bar{\chi}^{\mu}\chi_{\mu}\bar{q}i\gamma_{5}q \\ \bar{\chi}^{\mu}_{i}\gamma_{5}\chi_{\mu}\bar{q}q, \bar{\chi}^{\nu}\gamma^{\mu}\chi_{\nu}\bar{q}\gamma_{\mu}\gamma_{5}q \\ \bar{\chi}^{\mu}\gamma^{\mu}\gamma_{5}\chi_{\nu}\bar{q}\gamma_{\mu}q, \varepsilon^{\mu\nu\rho\sigma}_{i}(\bar{\chi}_{\mu}\chi_{\nu} - \bar{\chi}_{\nu}\chi_{\mu})\bar{q}\sigma_{\rho\sigma}q \\ \varepsilon^{\mu\nu\rho\sigma}\bar{\chi}^{\alpha}_{\sigma\mu\nu}\chi_{\alpha}\bar{q}\sigma_{\rho\sigma}q, (\bar{\chi}^{\mu}\gamma_{5}\chi^{\nu} - \bar{\chi}^{\nu}\gamma_{5}\chi^{\mu})\bar{q}\sigma_{\mu\nu}q \\ \varepsilon^{\mu\nu\rho\sigma}(\bar{\chi}_{\mu}\gamma_{5}\chi_{\nu} - \bar{\chi}_{\nu}\gamma_{5}\chi_{\mu})\bar{q}\sigma_{\rho\sigma}q \end{split}$	$\chi_{\mu}^{*}\chi^{\mu}\bar{q}i\gamma_{5}q$ $(\chi_{\nu}^{*}i\overleftrightarrow{\partial^{\mu}}\chi^{\nu})\bar{q}\gamma_{\mu}\gamma_{5}q$ $\varepsilon^{\mu\nu\rho\sigma}(\chi_{\mu}^{*}\overleftrightarrow{\partial_{\nu}}\chi_{\rho})\bar{q}\gamma_{\sigma}q$ $\varepsilon^{\mu\nu\rho\sigma}i(\chi_{\mu}^{*}\chi_{\nu}-\chi_{\nu}^{*}\chi_{\mu})\bar{q}\sigma_{\rho\sigma}q$


[Zheng, ZHY, Shao, Bi, Li, Zhang, arXiv:1012.2022, NPB;

Technologies and Detector Material

[From M. Lindner's talk (2016)]

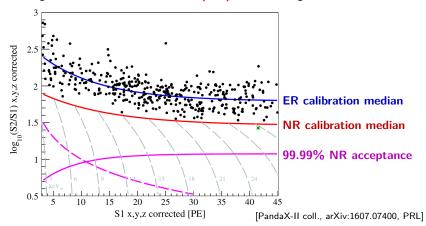
Technologies and Detector Material


Example: Dual-phase Xenon Time Projection Chamber

Upper: Xenon gas Lower: Liquid Xenon

UV scintillation photons recorded by photomultiplier tube (PMT) arrays on top and bottom

- Primary scintillation (S1):
 Scintillation light promptly emitted from the interaction vertex
- Secondary scintillation (S2):
 Ionization electrons emitted from the interaction are drifted to the surface and into the gas, where they emit proportional scintillation light


Experiments: XENON, LUX, PandaX

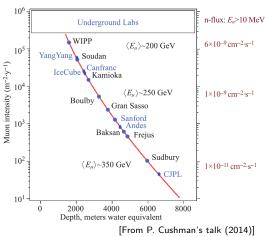
[From A. Cottle's talk (2017)]

PandaX-II Real Data: S1 versus S2

- S1 and S2: characterized by numbers of photoelectrons (PEs) in PMTs
- The γ background, which produces electron recoil (ER) events, can be distinguished from nuclear recoil (NR) events using the S2-to-S1 ratio

Backgrounds

Background suppression:


Deep underground
Shielded environments

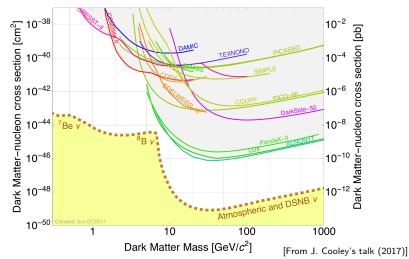
Cosmogenic backgrounds:

- Cosmic rays and secondary reactions
- Activation products in shields and detectors

Radiogenic backgrounds:

- External natural radioactivity: walls, structures of site, radon
- Internal radioactivity:
 Shield and construction materials, detector contamination in manufacture, naturally occurring radio-isotopes in target material

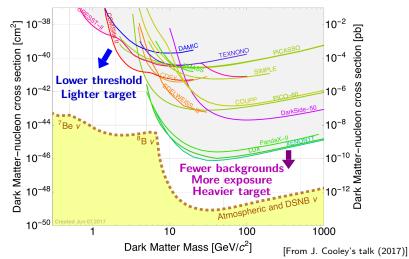
China JinPing Underground Laboratory (CJPL)



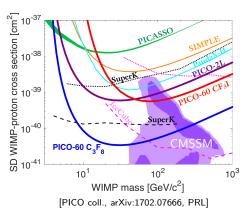
[Yue et al., arXiv:1602.02462]

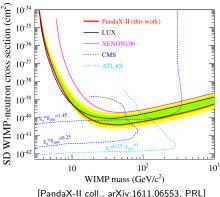
Experiments: CDEX, PandaX

Dark Matter

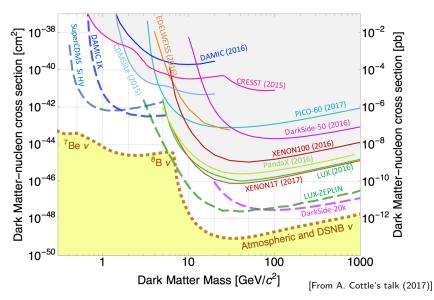

For SI scattering, the coherent enhancement allows us to treat protons and neutrons as the same species, "nucleons"

Exclusion Limits for SI Scattering


Dark Matter


For SI scattering, the coherent enhancement allows us to treat protons and neutrons as the same species, "nucleons"

Exclusion Limits for SD Scattering

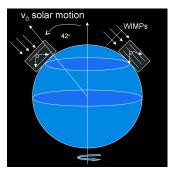

- For SD scattering, specific detection material usually has very different sensitivities to WIMP-proton and WIMP-neutron cross sections
- As there is no coherent enhancement for SD scattering, the sensitivity is lower than the SI case by several orders of magnitude

Near Future Prospect

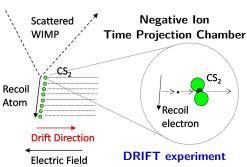
Dark Matter

Neutrino Backgrounds

Direct detection experiments will be sensitive to coherent neutrino-nucleus scattering (CNS) due to astrophysical neutrinos [Billard et al., arXiv:1307.5458, PRD]

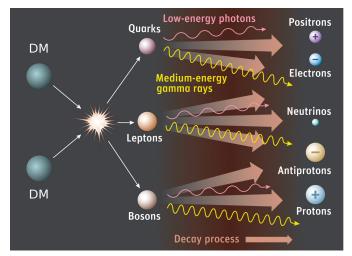

Solar neutrinos

- pp neutrinos: $p + p \rightarrow D + e^+ + \nu_e$
- ⁷Be neutrinos: $e^- + {}^7\text{Be} \rightarrow {}^7\text{Li} + \nu$
- pep neutrinos: $p + e^- + p \rightarrow D + \nu_e$
- B neutrinos: ${}^{8}\text{B} \rightarrow {}^{8}\text{Be}^{*} + e^{+} + \nu_{a}$
- Hep neutrinos: ${}^{3}\text{He} + p \rightarrow {}^{4}\text{He} + e^{+} + v_{a}$
- Atmospheric neutrinos Cosmic-ray collisions in the atmosphere
- Event rate [(ton.year.keV)⁻¹] WIMP signal: $m_{ij} = 6 \text{ GeV/c}^2$, $\sigma_{inn} = 4.4 \times 10^{-45} \text{ cm}^2$ Total CNS background 10² 1 keV threshold: atmospheric 100 evt/ton/year on Ge detector 10^{-4} 10^{-3} 10^{-2} 10^{-1} Recoil energy [keV] [From J. Billard's talk (2016)]
- Diffuse supernova neutrino background (DSNB) All supernova explosions in the past history of the Universe


Going beyond the Neutrino Floor

Possible ways to reduce the impact of neutrino backgrounds:

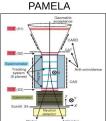
- Reduction of systematic uncertainties on neutrino fluxes
- Utilization of different target nuclei [Ruppin et al., arXiv:1408.3581, PRD]
- Measurement of annual modulation [Davis, arXiv:1412.1475, JCAP]
- Measurement of nuclear recoil direction [O'Hare, et al., arXiv:1505.08061, PRD]


Diurnal modulation

[From J. Spooner's talk (2010)]

Indirect Detection

Indirect detection looks for stable products (γ rays, cosmic rays, neutrinos) from dark matter annihilation or decay (if DM is not totally stable) in space



Indirect Detection Experiments

Dark Matter Source Function

Particle number per unit time per unit volume per unit energy interval of a stable species $(\gamma, e^{\pm}, \nu, p, \bar{p}, \cdots)$ produced from DM annihilation or decay:

(Annihilation)
$$Q_{\rm ann}({\bf x},E) = \frac{\langle \sigma_{\rm ann} v \rangle_{\rm tot}}{2 m_\chi^2} \rho^2({\bf x}) \sum_i F_i \left(\frac{dN}{dE}\right)_i$$
(Decay) $Q_{\rm dec}({\bf x},E) = \frac{1}{\tau_\chi m_\chi} \rho({\bf x}) \sum_i B_i \left(\frac{dN}{dE}\right)_i$

Astrophysics factors

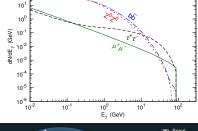
Particle physics factors

 $\rho(\mathbf{x})$: **DM mass density** at the source position \mathbf{x}

 $(dN/dE)_i$: number per unit energy interval from a single event in the channel i

 $\langle \sigma_{\rm ann} \nu \rangle_{\rm tot}$: thermal average of the total **annihilation cross section** multiplied by the relative velocity between the two incoming DM particles

 $F_i \equiv \langle \sigma_{\text{ann}} v \rangle_i / \langle \sigma_{\text{ann}} v \rangle_{\text{tot}}$: **branching fraction** of the annihilation channel *i*

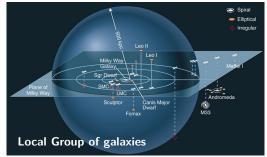

 $au_\chi \equiv 1/\Gamma_{\!\chi}$: mean lifetime of the DM particle

 $B_i \equiv \Gamma_i / \Gamma_\gamma$: branching ratio of the decay channel i

γ rays from DM: Continuous Spectrum

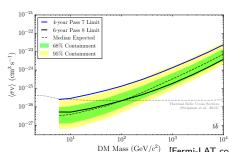
DM pair annihilation or decay into e^+e^- , $\mu^{+}\mu^{-}, \tau^{+}\tau^{-}, q\bar{q}, W^{+}W^{-}, Z^{0}Z^{0}, h^{0}h^{0}$

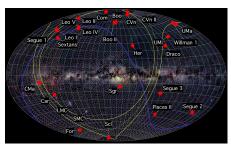
 γ -ray emission from final state radiation or particle decays

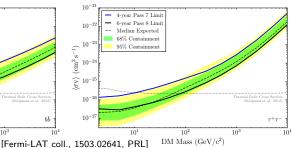


• Cut-off energy:

Dark Matter

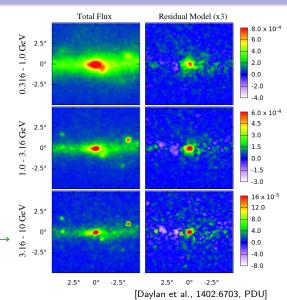

- m_{γ} for DM annihilation $m_{\gamma}/2$ for DM decay
- More promising to look at **DM-dominated regions:**
 - **X** Galactic Center


 - **K** Galactic halo
 - ****** dwarf galaxies
 - **X** clusters of galaxies



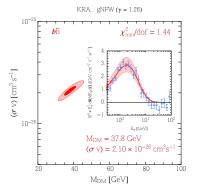
γ -ray Observation of Dwarf Galaxies

- The space experiment Fermi-LAT searched for γ -ray emission from dwarf spheroidal satellite galaxies of the Milky Way and found no significant signal
- Based on the 6-year data, upper limits on DM annihilation cross section are given



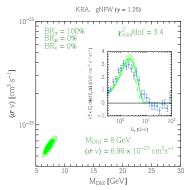
GeV Excess at the Galactic Center?

Since 2009, several groups reported an excess of continuous spectrum γ -rays in the Fermi-LAT data after subtracting well-known astrophysical backgrounds, locating in the Galactic Center (GC) region and peaking at a few GeV


Left: raw γ -ray maps Right: residual maps after subtracting the Galactic diffuse model, 20 cm template, point sources, and isotropic template

Interpretation with Dark Matter Annihilation

DM annihilation into $bar{b}$


$$\begin{split} m_\chi \simeq 30-40 \text{ GeV} \\ \langle \sigma_{\rm ann} v \rangle \sim 10^{-26} \text{ cm}^3 \text{ s}^{-1} \end{split}$$

DM annihilation into $au^+ au^-$

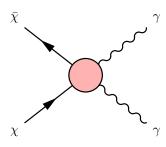
Indirect Detection

$$\begin{split} m_\chi \sim 9 \text{ GeV} \\ \langle \sigma_{\rm ann} \nu \rangle \sim 5 \times 10^{-27} \text{ cm}^3 \text{ s}^{-1} \end{split}$$

[Cirelli et al., arXiv:1407.2173, JCAP]

Indirect Detection

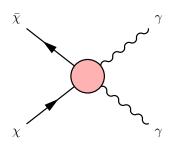
Dark Matter


DM particles should **not have electric charge** and thus not directly couple to photons

DM particles may couple to photons via high order loop diagrams

Highly suppressed: branching fraction may be only $\sim 10^{-4} - 10^{-1}$

Dark Matter

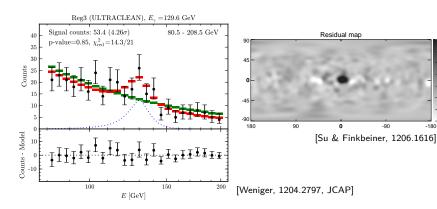

DM particles should **not have electric charge** and thus not directly couple to photons

DM particles may couple to photons via high order loop diagrams

Highly suppressed: branching fraction may be only $\sim 10^{-4} - 10^{-1}$

For nonrelativistic DM particles in space, the photons produced in $\chi \chi \to \gamma \gamma$ would be **mono-energetic**

A γ -ray line at energy $\sim m_{\gamma}$ ("smoking gun" for DM particles)

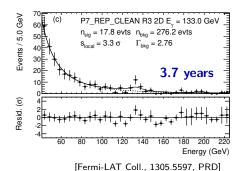


A γ -ray Line Signal at the Galactic Center?

• Using the 3.7-year Fermi-LAT γ -ray data, several analyses showed that there might be evidence of a monochromatic γ -ray line at energy ~ 130 GeV, originating from the Galactic center region (about $3-4\sigma$)

Indirect Detection 000000000000000000

• It may be explained by **DM** annihilation with $\langle \sigma_{ann} v \rangle \sim 10^{-27} \, \text{cm}^3 \, \text{s}^{-1}$

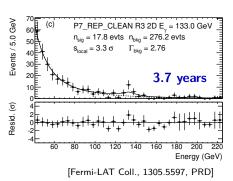


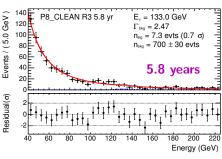
-180

Fermi-LAT Official Results: Not Confirmed with More Data

• 3.7-year data

The most significant fit occurred at $E_{\gamma} = 133$ GeV and had a **local** significance of 3.3 σ , translating to a global significance of 1.6 σ


Fermi-LAT Official Results: Not Confirmed with More Data

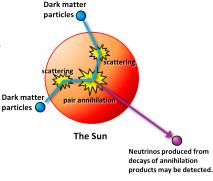

• 3.7-year data

The most significant fit occurred at $E_{\gamma}=133$ GeV and had a **local** significance of 3.3 σ , translating to a global significance of 1.6 σ

• 5.8-year data

The **local significance** has dropped to 0.72σ

[Fermi-LAT Coll., 1506.00013, PRD]


Dark Matter

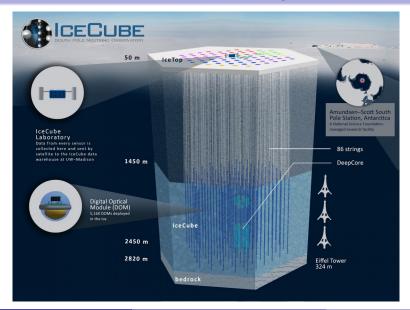
Neutrinos from DM

Dark matter may be captured and accumulated at the core of the Sun 💢 (or the Earth), producing high energy neutrinos that could freely go out

Change Rate of the number of DM particles in the Sun:

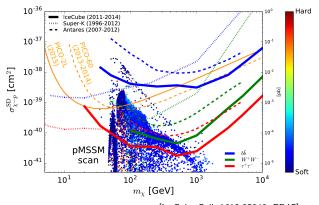
$$\frac{dN_{\chi}}{dt} = C_{\odot}(\sigma_{\chi H}, \sigma_{\chi He}) + A_{\odot}(\sigma_{ann})N_{\chi}^{2}$$

Indirect Detection 00000000000000000


products may be detected.

Capture rate C_0 depends on DM scattering on Hydrogen and Helium

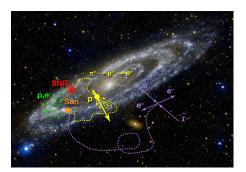
Annihilation rate $A_0 = \langle \sigma_{ann} \rangle / V_{eff}$ depends on DM annihilation as well as the effective volume of the solar core

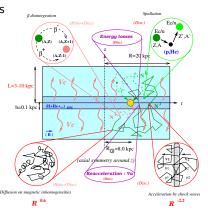

 $^{\downarrow \downarrow}$ The age of the Sun is long enough (\sim 4.6 billion years) to make the capture and annihilation processes reach equilibrium: $dN_{\gamma}/dt = 0$

IceCube: South Pole Neutrino Observatory

Searches for Neutrinos from DM Annihilation within the Sun

- No signal detected in searches for neutrinos with energies of GeV TeV from DM annihilation at the solar core
- Assuming equilibrium in the capture and annihilation processes, the constraints can be converted to those on the DM scattering cross section

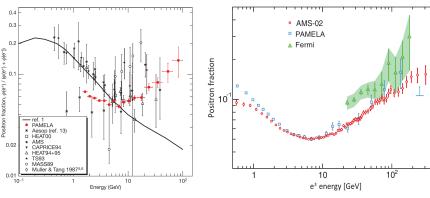



Cosmic Rays from DM

Dark Matter

 After produced in sources, Galactic cosmic rays diffuse in the interstellar space, suffering from several propagation effects before they arrive at the Earth: diffusion, energy losses, convection, reacceleration, spallation, ...

• Unlike γ rays and neutrinos, cosmic rays typically do not contain direction information of their sources

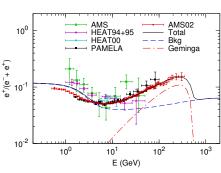


[Maurin et al., astro-ph/0212111]

Cosmic-ray Positron Excess

- In 2008, the **PAMELA** experiment found an unexpected increase in the cosmic-ray positron fraction with $E \gtrsim 10$ GeV
- In 2013, the AMS-02 experiment confirmed such a positron excess

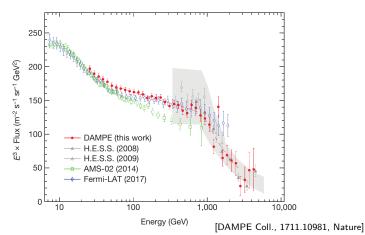
[AMS Coll., PRL 110, 141102 (2013)]


Interpretation: Dark Matter vs Pulsar

Interpretation with Galactic **DM** annihilation into $\tau^+\tau^-$

Dark Matter

10⁰ HEAT94+95 HEAT00 total **PAMELA** AMS-02 e+/(e-+e+) 10⁻² 10⁰ 10¹ 10² 10³ E (GeV) [Yuan, Bi, et al., 1304.1482, APP]


Interpretation with the nearby pulsar Geminga

[Yin, ZHY, Yuan, Bi, 1304.4128, PRD]

First Result from DAMPE

- In November 2017, DAMPE (悟空) collaboration released their first measurement of the cosmic-ray spectrum of electrons and positrons
- This measurement found a spectral break at ~ 0.9 TeV

Past and Current High Energy Colliders

• **TEVATRON**: $p\bar{p}$ collider, 1987-2011

Circumference: 6.28 km

Collision energy: $\sqrt{s} = 1.96 \text{ TeV}$

Luminosity: $\mathcal{L} \sim 4.3 \times 10^{32} \text{ cm}^{-2} \text{ s}^{-1}$

Detectors: CDF, DØ

• **LEP**: e^+e^- collider, 1989-2000

Circumference: 26.66 km

Collision energy: $\sqrt{s} = 91 - 209 \text{ GeV}$

Luminosity: $\mathcal{L} \sim (2-10) \times 10^{31} \text{ cm}^{-2} \text{ s}^{-1}$

Detectors: ALEPH, DELPHI, OPAL, L3

• LHC: pp (pPb, PbPb) collider, 2009-

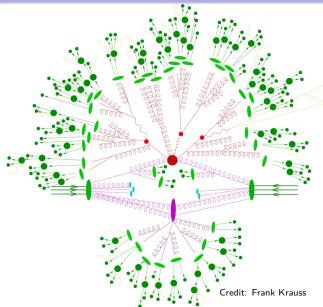
Circumference: 26.66 km

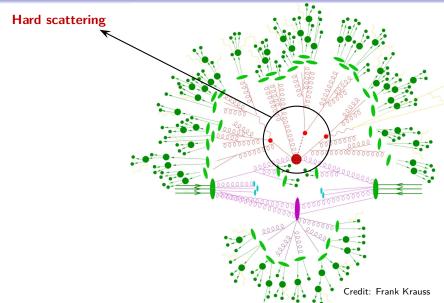
Collision energy: $\sqrt{s} = 7, 8, 13, 14 \text{ TeV}$

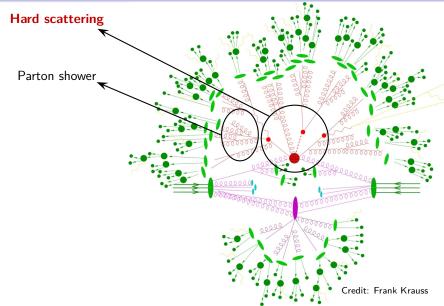
Luminosity: $\mathcal{L} \sim (1-5) \times 10^{34} \text{ cm}^{-2} \text{ s}^{-1}$

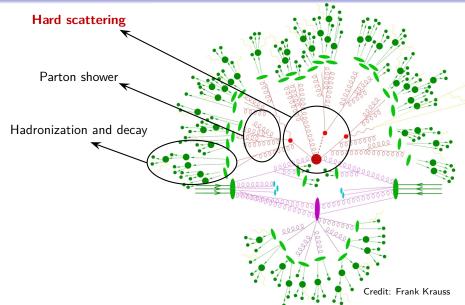
Detectors: ATLAS, CMS, ALICE, LHCb

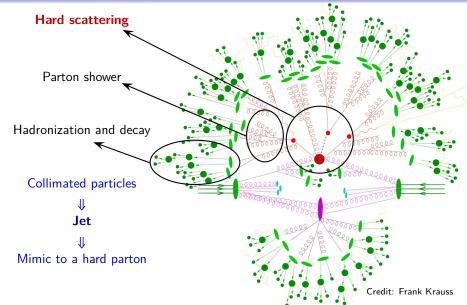
Future Projects

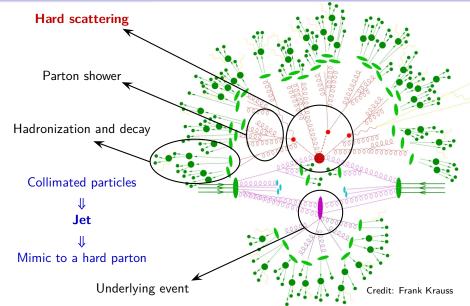

• ILC: International Linear Collider e^+e^- collider, $\sqrt{s} = 250 \text{ GeV} - 1 \text{ TeV}$

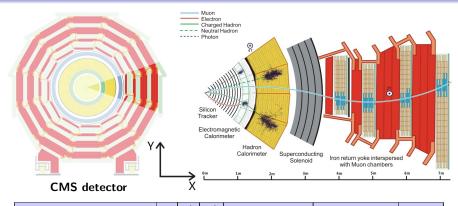

$$\mathcal{L} \sim 1.5 \times 10^{34} \text{ cm}^{-2} \text{ s}^{-1}$$


Detectors: SiD, ILD

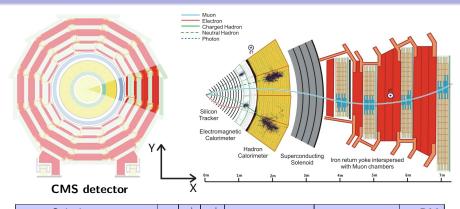



- CEPC: Circular Electron-Positron Collider (China) e^+e^- collider, $\sqrt{s} \sim 240 - 250$ GeV, $\mathcal{L} \sim 1.8 \times 10^{34}$ cm⁻² s⁻¹
- SPPC: Super Proton-Proton Collider (China) pp collider, $\sqrt{s} \sim 50 - 70 \text{ TeV}$, $\mathcal{L} \sim 2.15 \times 10^{35} \text{ cm}^{-2} \text{ s}^{-1}$
- FCC: Future Circular Collider (CERN)
 - **FCC**-ee: e^+e^- collider, $\sqrt{s} \sim 90 350 \text{ GeV}$, $\mathcal{L} \sim 5 \times 10^{34} \text{ cm}^{-2} \text{ s}^{-1}$
 - FCC-hh: pp collider, $\sqrt{s} \sim 100 \text{ TeV}$, $\mathcal{L} \sim 5 \times 10^{34} \text{ cm}^{-2} \text{ s}^{-1}$
- CLIC: Compact Linear Collider, $\sqrt{s} \sim 1-3$ TeV, $\mathcal{L} \sim 6 \times 10^{34}$ cm⁻² s⁻¹

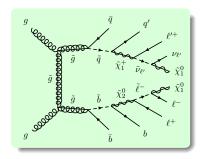




Dark Matter

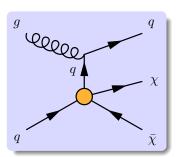


Particle Detectors at Colliders



Sub-detectors	γ	e^{\pm}	μ^{\pm}	Charged hadrons	Neutral hadrons	ν, DM
Tracker, $ \eta \lesssim 2.5$	×	√	√	√	×	×
ECAL, $ \eta \lesssim 3$	4	4	√	√	×	×
HCAL, $ \eta \lesssim 5$	×	×	×	•	•	×
Muon detectors, $ \eta \lesssim 2.4$	×	×	√	×	×	×

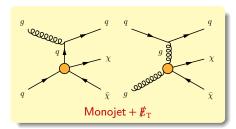
Particle Detectors at Colliders



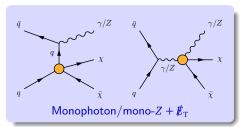
Sub-detectors	γ	e^{\pm}	μ^{\pm}	Charged hadrons	Neutral hadrons	ν, DM
Tracker, $ \eta \lesssim 2.5$	×	√	√	√	Missins	$\sqrt{\times}$
ECAL, $ \eta \lesssim 3$	4	4	√	√	Missing	×
HCAL, $ \eta \lesssim 5$	×	×	×	•	energy	×
Muon detectors, $ \eta \lesssim 2.4$	×	×	√	×	¥T	ر ×/ ا

Social dark matter Accompanied by other new particles Complicated decay chains Decay products of other particles

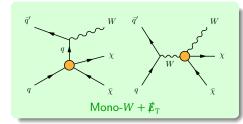
Various final states $(jets + leptons + \cancel{E}, ...)$


Mayerick dark matter

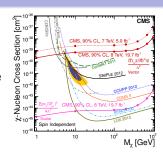
DM particle is the only new particle reachable at the collision energy Direct production

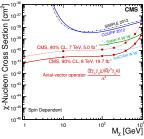

Mono-X + **#** final states (monojet, mono- γ , mono-W/Z, ...)

[From Rocky Kolb's talk]


DM Direct Production at Hadron Colliders

Dark Matter

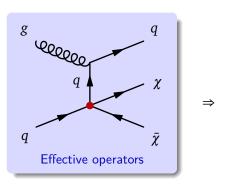

Sensitive to the DM couplings to quarks, gluons photons, Z bosons W^{\pm} bosons

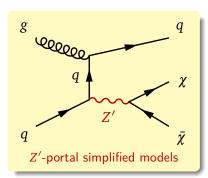


Monojet + **E**_T Channel at the LHC

Dark Matter

- In the context of effective field theory, effective operators can be used to describe interactions between DM and guarks, which could induce the monojet + \mathbb{E}_{T} signal at the LHC, as well as **DM-nucleus scattering signals** in DM direct detection experiments
- $\bar{\chi}\gamma_{\mu}\chi\bar{q}\gamma^{\mu}q$ operators: upper right plot The 8 TeV LHC sensitivity is better than direct detection only when $m_{\gamma} \lesssim 3 \text{ GeV}$
- $\bar{\chi}\gamma_{\mu}\gamma_{5}\chi\bar{q}\gamma^{\mu}\gamma_{5}q$ operators: lower right plot The 8 TeV LHC sensitivity is much better than direct detection





[CMS coll., arXiv:1408.3583, EPJC]

A Little Further than Effective Operators

- The valid range of effective field theory is limited: if the momentum transfer in scattering is sufficient large (comparable to or even larger than the mediator mass), the effective operator approach would break down
- In this case, simplified models involving only renormalizable operators would give a more reasonable description

SPPC Sensitivity to Z'-portal DM Simplified Models

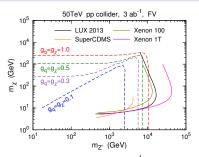
Z'-portal models for **Dirac fermion** χ :

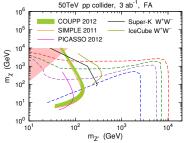
Dark Matter

• FV model: vector current interaction

$$\mathcal{L}_{\text{FV}} = \sum_{q} \mathbf{g}_{q} Z_{\mu}^{\prime} \bar{q} \gamma^{\mu} q + \mathbf{g}_{\chi} Z_{\mu}^{\prime} \bar{\chi} \gamma^{\mu} \chi$$

• FA model: axial vector current int.


$$\mathcal{L}_{\mathrm{FA}} = \sum_{q} \mathbf{g}_{q} Z_{\mu}^{\prime} \bar{q} \gamma^{\mu} \gamma_{5} q + \mathbf{g}_{\chi} Z_{\mu}^{\prime} \bar{\chi} \gamma^{\mu} \gamma_{5} \chi$$


Name Dashed lines: 90% CL expected exclusion limits at the SPPC with $\sqrt{s} = 50$ TeV

Nolid lines: 90% CL exclusion limits from € direct detection for $g_q = g_{\gamma} = 0.5$

Light red region: unitarity violation for $g_a = g_{\gamma} = 1$

[Xiang, Bi, Yin, **ZHY**, 1503.02931, PRD]

Dark Matter

- $^{\oplus}$ We studied four τ -portal simplified models involving a mediator with additive quantum numbers identical to the right-handed au^-
- We interpreted the GC GeV excess signal as DM annihilation into $\tau^+\tau^-$, and discussed how to test this interpretation at the LHC
- **Spin-1/2** fermion χ , spin-0 mediator ϕ : $\mathcal{L}_{\phi} = \lambda \phi \, \bar{\tau}_R \chi_L + \text{h.c.}$
 - **DFDM model:** χ is a Dirac fermion
 - MFDM model: χ is a Majorana fermion
- \bullet Spin-0 scalar γ , spin-1/2 mediator ψ : $\mathcal{L}_{ub} = \kappa \chi \bar{\tau}_R \psi_L + \text{h.c.}$
 - CSDM model: χ is a complex scalar
 - RSDM model: γ is a real scalar

DM Annihilation into $\tau^+\tau^-$ in the Low Velocity Limit

DFDM model:

$$\frac{1}{2} \left< \sigma_{\rm ann} \nu \right> = \frac{\lambda^4 \ m_\chi^2 \ \beta_\tau}{64 \pi (m_\phi^2 + m_\chi^2 - m_\tau^2)^2} \simeq 5 \times 10^{-27} \ {\rm cm^3 \, s^{-1}} \bigg(\frac{m_\chi}{9.4 \ {\rm GeV}} \bigg)^2 \bigg(\frac{\lambda}{m_\phi/179 \ {\rm GeV}} \bigg)^4$$

MFDM model:

$$\langle \sigma_{\rm ann} v \rangle = \frac{\lambda^4 \, m_\tau^2 \, \beta_\tau}{32 \pi (m_\phi^2 + m_\chi^2 - m_\tau^2)^2} \simeq 5 \times 10^{-27} \, \, {\rm cm}^3 \, {\rm s}^{-1} \left(\frac{\lambda}{m_\phi/93 \, \, {\rm GeV}} \right)^4$$

CSDM model:

$$\frac{1}{2} \left< \sigma_{\rm ann} \nu \right> = \frac{\kappa^4 \, m_\tau^2 \, \beta_\tau^3}{32 \pi (m_\psi^2 + m_\chi^2 - m_\tau^2)^2} \simeq 5 \times 10^{-27} \, \, {\rm cm}^3 \, {\rm s}^{-1} \left(\frac{\kappa}{m_\psi/93 \, \, {\rm GeV}} \right)^4$$

RSDM model:

$$\langle \sigma_{\rm ann} \nu \rangle = \frac{\kappa^4 \; m_\tau^2 \; \beta_\tau^3}{4\pi (m_\psi^2 + m_\chi^2 - m_\tau^2)^2} \simeq 5 \times 10^{-27} \; {\rm cm^3 \, s^{-1}} \bigg(\frac{\kappa}{m_\psi/156 \; {\rm GeV}} \bigg)^4$$

$$\left(\beta_\tau \equiv \sqrt{1-m_\tau^2/m_\gamma^2}; \;\; m_\tau \ll m_\chi \ll m_\phi, m_\psi \; \text{approximation} \right)$$

Indirect Detection

DM Annihilation into $\tau^+\tau^-$ in the Low Velocity Limit

DFDM model:

Dark Matter

$$\frac{1}{2} \left< \sigma_{\rm ann} v \right> = \frac{\lambda^4 \, m_\chi^2 \, \beta_\tau}{64 \pi (m_\phi^2 + m_\chi^2 - m_\tau^2)^2} \simeq 5 \times 10^{-27} \, \, {\rm cm^3 \, s^{-1}} \bigg(\frac{m_\chi}{9.4 \, {\rm GeV}} \bigg)^2 \bigg(\frac{\lambda}{m_\phi / 179 \, {\rm GeV}} \bigg)^4$$

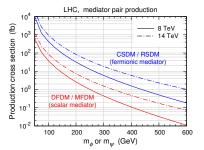
MFDM model: _Helicity suppression

$$\langle \sigma_{\rm ann} \nu \rangle = \frac{\lambda^4 (m_\tau^2) \beta_\tau}{32 \pi (m_\phi^2 + m_\chi^2 - m_\tau^2)^2} \simeq 5 \times 10^{-27} \text{ cm}^3 \text{ s}^{-1} \left(\frac{\lambda}{m_\phi/93 \text{ GeV}} \right)^4$$

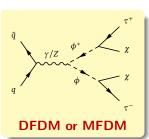
CSDM model: Helicity suppression

$$\frac{1}{2} \left\langle \sigma_{\rm ann} v \right\rangle = \frac{\kappa^4 (m_\tau^2) \beta_\tau^3}{32 \pi (m_\psi^2 + m_\chi^2 - m_\tau^2)^2} \simeq 5 \times 10^{-27} \ {\rm cm}^3 \, {\rm s}^{-1} \left(\frac{\kappa}{m_\psi/93 \ {\rm GeV}} \right)^4$$

RSDM model: Helicity suppression

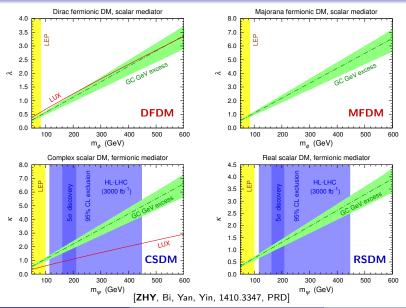

$$\langle \sigma_{\rm ann} v \rangle = \frac{\kappa^4 (m_{\tau}^2) \beta_{\tau}^3}{4\pi (m_{\psi}^2 + m_{\gamma}^2 - m_{\tau}^2)^2} \simeq 5 \times 10^{-27} \ {\rm cm^3 \, s^{-1}} \bigg(\frac{\kappa}{m_{\psi}/156 \ {\rm GeV}} \bigg)^4$$

$$(eta_ au \equiv \sqrt{1-m_ au^2/m_\chi^2}; \ m_ au \ll m_\chi \ll m_\phi, m_\psi$$
 approximation)

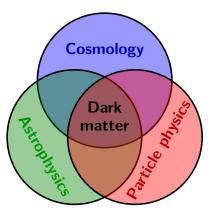

Indirect Detection

Mediator Pair Production at the LHC

- The mediators ϕ and ψ could be produced at the LHC through **Drell-Yan processes** exchanging s-channel γ or Z, and then decay into τ^{\pm} and χ
- We found that the 8 TeV LHC data cannot explore the interesting regions in these models, and went further to investigate the LHC sensitivity at $\sqrt{s} = 14$ TeV with tight $\tau_{\rm h}$ -tagging techniques

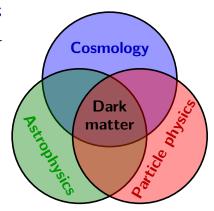


[ZHY, Bi, Yan, Yin, 1410.3347, PRD]



Sensitivity of the 14 TeV High-Luminosity LHC

Summary


- Dark matter connects our knowledge of the Universe from the largest to the smallest scales
- Although several anomalous observations have been found in direct and indirect searches, there is no absolutely solid DM detection signal so far
- DM detection sensitivities are being improved quickly; it is very promising to detect robust DM signals in the near future

Summary

- Dark matter connects our knowledge of the Universe from the largest to the smallest scales
- Although several anomalous observations have been found in direct and indirect searches, there is no absolutely solid DM detection signal so far
- DM detection sensitivities are being improved quickly; it is very promising to detect robust DM signals in the near future

Thank you!

