Motivation		Detector Level		Conclusion
000	000	000000	000000	0

Determining the Quantum Numbers of Simplified Models in $t\bar{t}X$ production at the LHC

Zhao-Huan Yu (余钊焕)

ARC Centre of Excellence for Particle Physics at the Terascale, School of Physics, the University of Melbourne

Based on Dolan, Spannowsky, Wang, ZHY, arXiv:1606.00019, PRD

CoEPP lunch talk

28 July 2016, Melbourne

1 / 20

July 2016

Zhao-Huan Yu (Melbourne)

Quantum Numbers in $t\bar{t}X$ production at the LHC

Motivation ●○○	Parton Level	Detector Level	Discrimination	Conclusion
Motivation				

Fermi-LAT Galactic Centre excess

- Galactic Centre excess of GeV diffuse γ rays can be explained by dark matter (DM) annihilation into Standard Model (SM) particles
- DM annihilation into $b\bar{b}$ provides a particularly good fit
 - ⇒ a light mediator X coupled to DM and the 3rd generation quarks?

Motivation ●○○	Parton Level	Detector Level	Discrimination	Conclusion
Motivation				

Fermi-LAT Galactic Centre excess

- Galactic Centre excess of GeV diffuse γ rays can be explained by dark matter (DM) annihilation into Standard Model (SM) particles
- DM annihilation into $b\bar{b}$ provides a particularly good fit
 - ⇒ a light mediator X coupled to DM and the 3rd generation quarks?

Such a light ($\lesssim 100$ GeV) resonance X at the LHC

- $m_X < 2m_t$: $X \to t \bar{t}$ forbidden
- $m_X < 2m_{\rm DM}$: decay into DM forbidden
- $X \rightarrow b\bar{b}$ is likely to dominate
- LHC signature $pp \rightarrow t\bar{t}X \rightarrow t\bar{t}b\bar{b}$
 - Easily hidden in Run 1 searches
 - Promising in 13/14 TeV searches

Zhao-Huan Yu (Melbourne)

Quantum Numbers in $t\bar{t}X$ production at the LHC July 2016

5 2 / 20

Motivation ○●○	Parton Level	Detector Level	Discrimination	Conclusion
Simplified M	odels			

If such a new light resonance X is discovered at the LHC, the first priority will be the characterisation of its **spin and CP quantum numbers**

Four simplified models with a new neutral resonance which is an eigenstate of parity and charge conjugation are considered

$$\begin{split} X &= S \ (J^{PC} = \mathbf{0}^{++}): \ \mathcal{L}_{S} = -\sum_{q=b,t} \frac{g_{q} m_{q}}{v} S \,\bar{q}q \\ X &= A \ (J^{PC} = \mathbf{0}^{-+}): \ \mathcal{L}_{P} = -\sum_{q=b,t} \frac{g_{q} m_{q}}{v} A \bar{q}i\gamma_{5}q \\ X &= Z_{V}^{\prime \mu} \ (J^{PC} = \mathbf{1}^{--}): \ \mathcal{L}_{V} = -\sum_{q=b,t} g_{q} Z_{V}^{\prime \mu} \bar{q}\gamma_{\mu}q \\ X &= Z_{A}^{\prime \mu} \ (J^{PC} = \mathbf{1}^{++}): \ \mathcal{L}_{AV} = -\sum_{q=b,t} g_{q} Z_{A}^{\prime \mu} \bar{q}\gamma_{\mu}\gamma_{5}q \end{split}$$

Motivation ○●○	Parton Level	Detector Level	Discrimination	Conclusion
Simplified Mo	odels			

If such a new light resonance X is discovered at the LHC, the first priority will be the characterisation of its **spin and CP quantum numbers**

Four simplified models with a new neutral resonance which is an eigenstate of parity and charge conjugation are considered

The $pp \rightarrow t\bar{t}X$ production cross section depends on g_t and m_X

Zhao-Huan Yu (Melbourne) Quantum Numbers in $t\bar{t}X$ production at the LHC July 2016 3 / 20

Motivation ○○●	Parton Level	Detector Level	Discrimination	Conclusion
Spin and	Parity Discrim	ination		

Di-leptonic top decay channel $pp \rightarrow t\bar{t}X \rightarrow b\ell v + b\ell v + bb$

- The azimuthal angle between the leptons $\Delta \phi_{\ell\ell}$ encodes the spin correlation information of the top pair, which is related to the ttX coupling structure
- Previous studies showed that $\Delta \phi_{\ell\ell}$ is useful for discriminating $S(0^{++})$ from A (0^{-+})

[Buckley & Gonçalves, 1407.2173, PRL]

Motivation	Parton Level	Detector Level	Discrimination	Conclusion
		000000	000000	0
Spin and	Parity Discrim	ination		

Di-leptonic top decay channel $pp \rightarrow t\bar{t}X \rightarrow b\ell \nu + b\ell \nu + bb$

- The azimuthal angle between the leptons $\Delta \phi_{\ell\ell}$ encodes the spin correlation information of the top pair, which is related to the ttX coupling structure
- Previous studies showed that $\Delta \phi_{\ell\ell}$ is useful for discriminating S (0⁺⁺) from A (0⁻⁺)

Semi-leptonic top decay channel $pp \rightarrow t\bar{t}X \rightarrow bjj + b\ell \nu + bb$

- Larger backgrounds
- The neutrino *v* is the only source of the missing transverse momentum *p*_T ↓
 Able to nearly fully reconstruct the two tops ↓
 Helpful for exploring other spin and parity discriminating variables

[Buckley & Gonçalves, 1407.2173, PRL]

Normalised distributions of $p_{T,X}$ and $m_{t\bar{t}}$ for $m_X = 50$ GeV: similar in shape; different peak positions; $t\bar{t}S$ is the softest; $t\bar{t}A$ is the hardest

Zhao-Huan Yu (Melbourne)

Quantum Numbers in $t\bar{t}X$ production at the LHC July 2016 5 / 20

Distributions of θ_t (the angle between *t* and the beamline) in the **lab frame** show no difference

Zhao-Huan Yu (Melbourne)

Motivation Parton Level Detector Level Discrimination Conclusion 000 Centre-of-Mass (CM) Frame: the θ_{\star}^{CM} Variable

Distributions of θ_t (the angle between t and the beamline) in the lab frame show no difference

Boost to the $t\bar{t}X$ **CM frame** $\Rightarrow \theta_t^{CM}$

- \blacktriangleright t*t*S: a broad plateau around $\pi/2$
- Other signals: a double-peak structure

Zhao-Huan Yu (Melbourne)

Quantum Numbers in $t\bar{t}X$ production at the LHC

July 2016 6 / 20

LHC, $\sqrt{s} = 14 \text{ TeV}$, tTX production, $m_{\chi} = 50 \text{ GeV}$ 1.0 0.9 tīS tĪĀ 0.8 tīZív 0.7 tīZ'₄ 1/ơ dơ/d⊖^{CM} 0.6 0.5 Server and Side 0.4 0.3 0.2 0.1 0.0 1.5 2.5 3.0 0.0 0.5 1.0 2.0 Θ^{CM}

 $t\bar{t}X$ CM frame

- All the signals peak at $\pi/2$
- $t\bar{t}S$ has the broadest distribution

Motivation	Parton Level	Detector Level	Discrimination	Conclusion
Detector-Lev	el Simulation			

Main background: $t\bar{t}b\bar{b}$ production Minor backgrounds: $t\bar{t}$ + light jets, $t\bar{t}Z$, and $t\bar{t}h$ production Simulation: MadGraph + PYTHIA + Delphes (ATLAS setup) Jet clustering algorithm: anti- $k_{\rm T}$ with R = 0.4For $p_{\rm T} = 100$ GeV, *b*-tagging efficiency ~ 73%, misidentification rate ~ 14% for *c*-jets, ~ 0.27% for other light jets

Selection criteria for $pp \rightarrow t\bar{t}X \rightarrow bjj + b\ell v_{\ell} + b\bar{b}$

- Exactly 1 charged lepton ℓ (electron or muon) isolated from any jet with $\Delta R > 0.4$
- Exactly 4 b-tagged jets and at least 2 light jets
- $\bullet\,$ The lepton and the jets should have $p_{\rm T}>25~{\rm GeV}$ and $|\eta|<2.5$

Motivation	Parton Level	Detector Level ○●○○○○	Discrimination	Conclusion
Reconstructio	on			

Reconstruct the hadronically decaying top by iterating through combinations

of the light jets and *b*-jets for minimising $\chi^2 = \frac{(m_{jj} - m_W)^2}{m_W^2} + \frac{(m_{t,\text{had}} - m_t)^2}{m_t^2}$

 m_{jj} : the invariant mass of two light jets j_1 and j_2 $m_{t \text{ had}}$: the invariant mass of j_1 , j_2 , and a *b*-jets b_1

Zhao-Huan Yu (Melbourne)

Quantum Numbers in $t\bar{t}X$ production at the LHC Jub

Motivation		Detector Level	Conclusion
		000000	
Reconstr	uction		

Reconstruct the leptonically decaying top

by iterating through the remaining b-jets

for minimising
$$\chi^2 = \frac{(m_{t,\text{lep}} - m_t)^2}{m_t^2}$$

 $m_{t,\text{lep}}$: the invariant mass constructed by a *b*-jets b_2 , the lepton ℓ , and the missing transverse momentum p_T

Motivation		Detector Level	Conclusion
		00000	
Roconstr	uction		

Reconstruct the leptonically decaying top by iterating through the remaining *b*-jets

for minimising
$$\chi^2 = \frac{(m_{t,\text{lep}} - m_t)^2}{m_t^2}$$

 $m_{t,lep}$: the invariant mass constructed by a *b*-jets b_2 , the lepton ℓ , and the missing transverse momentum p

- m_{hh} : the invariant mass of the remaining *b*-jets b_3 and b_4 ; used to search for the resonance X
- A clear peak at the signal resonance position
- The Z peak from $t\bar{t}Z$ may be useful for data-driven background estimation

Zhao-Huan Yu (Melbourne)

Motivation	Parton Level	Detector Level	Discrimination	Conclusion
Cut Flow				

Selection cuts for further isolating the signal (for $m_X = 50$ GeV):

 $\begin{array}{ll} \mbox{60 GeV} < m_{jj} < 100 \ \mbox{GeV} & 120 \ \mbox{GeV} < m_{t,\rm had} < 200 \ \mbox{GeV} \\ 120 \ \mbox{GeV} < m_{t,\rm lep} < 220 \ \mbox{GeV} & 35 \ \mbox{GeV} < m_{bb} < 65 \ \mbox{GeV} \\ \end{array}$

	Events per fb^{-1}				
	tībb	tĪS	tĪA	$t\bar{t}Z_{ m V}^{\prime}$	$t\bar{t}Z_{ m A}^{\prime}$
No cut	24375	4211	428	714	2409
1 lepton	4612	744	80.0	132	444
4 <i>b</i> -tags	106	33.9	5.15	7.12	27.5
\geq 2 light jets	72.9	22.1	3.51	4.86	18.7
$m_{jj} \in (60, 100) \text{ GeV}$	42.0	12.6	2.05	2.82	10.9
$m_{t,\text{had}} \in (120, 200) \text{ GeV}$	39.1	11.9	1.92	2.64	10.2
$m_{t,\text{lep}} \in (120, 220) \text{ GeV}$	30.2	9.87	1.52	2.09	8.07
$m_{bb} \in (35, 65) \text{ GeV}$	4.35	2.33	0.333	0.450	1.78

The $t\bar{t}b\bar{b}$ background is suppressed by a factor of ~ 5000

Zhao-Huan Yu (Melbourne) Quantum Numbers in $t\bar{t}X$ production at the LHC July 2016 11 / 20

Motivation	Parton Level	Detector Level 0000●0	Discrimination	Conclusion O
Sensitivity fo	r Discovery			

Estimation of the expected exclusion on the signal

- Carry out a CL_s hypothesis test based on the m_{bb} distributions from 15 GeV to 200 GeV without applying the m_{bb} cut
- Scale up the $t\bar{t}b\bar{b}$ background by a factor of 1.2 in order to take into account the remaining backgrounds
- Assume a flat 10% systematic uncertainty on the total background

Quantum Numbers in $t\bar{t}X$ production at the LHC

July 2016 13 / 20

 Motivation
 Parton Level
 Detector Level
 Discrimination
 Conclusion

 000
 000
 000000
 000000
 0

The **4-momenta** of the hadronically decaying top, the leptonically decaying top, and the resonance X can be constructed from the identified jets and lepton:

$$p_{t,had} = p_{b_1} + p_{j_1} + p_{j_2}, \quad p_{t,lep} = p_{b_2} + p_{\ell} + p_T, \quad p_X = p_{b_3} + p_{b_4}$$

The $t\bar{t}X$ **CM frame** can be found by a Lorentz boost to the frame that satisfies $\mathbf{p}_{t,had} + \mathbf{p}_{t,lep} + \mathbf{p}_X = 0$

These 4-momenta allow us to construct detector-level discriminating variables

$$p_{\mathrm{T},X}, \ m_{tt}, \ \theta_{t,\mathrm{had}}^{\mathrm{CM}}, \ \mathrm{and} \ \Theta^{\mathrm{CM}},$$

which are equivalent to the parton-level variables discussed above. Note that $m_{tt} \equiv (p_{t,had} + p_{t,lep})^2$, and $\theta_{t,had}^{CM}$ corresponds to the hadronically decaying top.

An analogous variable $\theta_{t,\text{lep}}^{\text{CM}}$ can be defined using $p_{t,\text{lep}}$, but it is less powerful than $\theta_{t,\text{had}}^{\text{CM}}$ for discrimination among the simplified models.

Zhao-Huan Yu (Melbourne) Quantum Numbers in $t\bar{t}X$ production at the LHC July 2016 14 / 20

Parton Level vs Detector Level

Zhao-Huan Yu (Melbourne)

Quantum Numbers in $t\bar{t}X$ production at the LHC

Quantum Numbers in $t\bar{t}X$ production at the LHC

July 2016 16 / 20

 Motivation
 Parton Level
 Detector Level
 Discrimination
 Conclusion

 000
 000
 000
 000
 00
 00

 CL. Hypothesis Test for Discrimination

 CL_s hypothesis test: study the discriminating power of each variable

Analogous to those in the CMS [1411.3441] and ATLAS [1506.05669] analyses for determining the spin and parity of the SM Higgs, the **test statistic** is defined as

$$Q = -2\ln\frac{\mathcal{L}(s_2 + b)}{\mathcal{L}(s_1 + b)}$$

 $\mathcal{L}(s+b)$: the likelihood for the background b plus a signal hypothesis s

Q: used to discriminate between signal hypotheses s_1 and s_2

For an observed value Q_{obs} , the exclusion of the hypothesis s_2 in favour of the hypothesis s_1 (denoted as " s_1 vs s_2 " hereafter) is evaluated in terms of the **modified confidence level**

$$CL_{s} = \frac{P(Q \ge Q_{obs}|s_{2} + b)}{P(Q \ge Q_{obs}|s_{1} + b)}$$

 $P(Q \ge Q_{obs}|s+b)$: the probability for $Q \ge Q_{obs}$ under a hypothesis s+b

Zhao-Huan Yu (Melbourne) Quantum Numbers in $t\bar{t}X$ production at the LHC July 2016 17 / 20

Quantum Numbers in $t\bar{t}X$ production at the LHC July

July 2016 18 / 20

Quantum Numbers in $t\bar{t}X$ production at the LHC Ju

July 2016 18 / 20

Quantum Numbers in $t\bar{t}X$ production at the LHC July 2016

2016 18 / 20

Quantum Numbers in $t\bar{t}X$ production at the LHC July 2016

16 19 / 20

Motivation	Parton Level	Detector Level	Discrimination	Conclusion
Conclusion				

- LHC Searches for t t X production are sensitive to a new resonance X that predominantly couples to the third generation quarks. If such a resonance is discovered, a further measurement of its parity and spin will be essential for revealing the underlying new physics.
- We demonstrated four kinematic variables for discriminating different assumptions of the spin and parity in the semi-leptonic channel.
- We found that the scalar is the easiest one to be distinguished from others, while the hardest case is to discriminate between the pseudoscalar and the axial vector.

Motivation	Parton Level	Detector Level	Discrimination	Conclusion
Conclusion				

- LHC Searches for t t X production are sensitive to a new resonance X that predominantly couples to the third generation quarks. If such a resonance is discovered, a further measurement of its parity and spin will be essential for revealing the underlying new physics.
- We demonstrated four kinematic variables for discriminating different assumptions of the spin and parity in the semi-leptonic channel.
- We found that the scalar is the easiest one to be distinguished from others, while the hardest case is to discriminate between the pseudoscalar and the axial vector.

Thanks for your attention!