Diphoton Excess	EFT Approach	Dark Matter	DM detection	Conclusion
000	0000	0000	0000	0

The 750 GeV Diphoton Excess and Its Possible Connection to Dark Matter

Zhao-Huan Yu (余钊焕)

ARC Centre of Excellence for Particle Physics at the Terascale, School of Physics, The University of Melbourne

Based on Bi, Xiang, Yin, ZHY, arXiv:1512.06787

CoEPP 2016 Annual Workshop

18 Feb 2016, Torquay

1 / 17

Feb 2016

Zhao-Huan Yu (Melbourne)

750 GeV Diphoton Excess and Dark Matter

Diphoton Excess EFT Approach OOOO Dark Matter OOOO Conclusion OOOO CONTROL CONCLUSION OOO CONTROL CONTROL CONCLUSION OOO CONTROL CONTROL CONCLUSION OOO CONTROL CO

Local (global) significance: ATLAS 3.9 σ (2.3 σ), CMS 2.6 σ (1.2 σ) Signal cross section: $\sigma_{\gamma\gamma} \sim 10$ fb ATLAS data favor a resonance ϕ with $m_{\phi} \sim 750$ GeV and $\Gamma_{\phi} \sim 45$ GeV

750 GeV Diphoton Excess and Dark Matter

Diphoton Excess	EFT Approach	Dark Matter	DM detection	Conclusion
000	0000	0000	0000	
Decay topol	ogies			

From a resonance?

[Knapen et al., 1512.04928]

Diphoton Excess ○●○	EFT Approach	Dark Matter	DM detection	Conclusion
Decay topologi	es			

[Knapen et al., 1512.04928]

Diphoton Excess ○●○	EFT Approach	Dark Matter	DM detection	Conclusion O
Decay topolo	gies			

[Knapen et al., 1512.04928]

Diphoton Excess ○●○	EFT Approach	Dark Matter 0000	DM detection	Conclusion O
Decay topolog	ies			

[Knapen et al., 1512.04928]

Diphoton Excess ○●○	EFT Approach	Dark Matter	DM detection	Conclusion O
Decay topologi	ies			

[Knapen et al., 1512.04928]

Diphoton Excess ○●○	EFT Approach	Dark Matter	DM detection	Conclusion
Decay topologi	es			

[Knapen et al., 1512.04928]

NP for New Physics. SM for Standard Model. [Knapen et al., 1512.04928]

Diphoton Excess ○●○	EFT Approach	Dark Matter	DM detection	Conclusion
Decay topologi	es			

NP for New Physics. SM for Standard Model. [Knapen et al., 1512.04928]

Diphoton Excess ○●○	EFT Approach	Dark Matter	DM detection	Conclusion
Decay topologi	es			

[Knapen et al., 1512.04928]

Resonance production at the LHC

750 GeV Diphoton Excess and Dark Matter Zhao-Huan Yu (Melbourne)

Diphoton Excess	EFT Approach •000	Dark Matter 0000	DM detection	Conclusion
Effective intera	ctions			

According to the Landau-Yang theorem, a diphoton resonance should be either a spin-0 or spin-2 particle

Effective interactions between a spin-0 resonance ϕ and SM gauge bosons:

• CP-even ϕ $\mathcal{L}_{0^{+}} = \frac{1}{\Lambda} \phi(k_1 B_{\mu\nu} B^{\mu\nu} + k_2 W^a_{\mu\nu} W^{a\mu\nu} + k_3 G^a_{\mu\nu} G^{a\mu\nu})$ • CP-odd ϕ $\mathcal{L}_{0^{-}} = \frac{1}{\Lambda} \phi(k_1 B_{\mu\nu} \tilde{B}^{\mu\nu} + k_2 W^a_{\mu\nu} \tilde{W}^{a\mu\nu} + k_3 G^a_{\mu\nu} \tilde{G}^{a\mu\nu})$

In terms of physical states,

$$\begin{aligned} \mathcal{L}_{0^+} \supset \frac{1}{\Lambda} \phi(k_{AA}A_{\mu\nu}A^{\mu\nu} + k_{AZ}A_{\mu\nu}Z^{\mu\nu} + k_{ZZ}Z_{\mu\nu}Z^{\mu\nu}) \\ \mathcal{L}_{0^-} \supset \frac{1}{\Lambda} \phi(k_{AA}A_{\mu\nu}\tilde{A}^{\mu\nu} + k_{AZ}A_{\mu\nu}\tilde{Z}^{\mu\nu} + k_{ZZ}Z_{\mu\nu}\tilde{Z}^{\mu\nu}) \\ \text{with } k_{AA} \equiv k_1 c_W^2 + k_2 s_W^2, \ k_{AZ} \equiv 2s_W c_W (k_2 - k_1), \ k_{ZZ} \equiv k_1 s_W^2 + k_2 c_W^2 \end{aligned}$$

Diphoton Excess	EFT Approach ○●○○	Dark Matter	DM detection	Conclusion
Decay widths	:			
$\Gamma(\phi \rightarrow$	$\gamma\gamma) = \frac{k_{\rm AA}^2 m_\phi^3}{4\pi\Lambda^2} = 3$.4 MeV $\left(\frac{k_{\text{AA}}}{0.01}\right)^2 \left($	$\left(\frac{\Lambda}{1 \text{ TeV}}\right)^{-2} \left(\frac{m_{\phi}}{750 \text{ Ge}}\right)^{-2}$	\overline{V}
$\Gamma(\phi \rightarrow$	$gg) = \frac{2k_3^2 m_\phi^3}{\pi \Lambda^2} = 2$	$27 \text{ MeV}\left(\frac{k_3}{0.01}\right)^2 \left(\frac{k_3}{0.01}\right)^2 \left$	$\left(\frac{\Lambda}{1 \text{ TeV}}\right)^{-2} \left(\frac{m_{\phi}}{750 \text{ GeV}}\right)^{-2}$	\overline{V}
$\Gamma(\phi \to ZZ)$	$\simeq rac{k_{\mathrm{ZZ}}^2 m_\phi^3}{4\pi\Lambda^2}, \Gamma(\phi)$	$\rightarrow \gamma Z) \simeq \frac{k_{\rm AZ}^2 m_\phi^3}{8\pi\Lambda^2},$	$\Gamma(\phi \rightarrow W^+W^-) \simeq$	$\frac{k_2^2 m_\phi^3}{2\pi\Lambda^2}$

Diphoton Excess	EFT Approach ○●○○	Dark Matter	DM detection	Conclusion O
Decay width	s:			
Γ(φ –	$\Rightarrow \gamma \gamma) = \frac{k_{AA}^2 m_{\phi}^3}{4\pi \Lambda^2} = 3$.4 MeV $\left(\frac{k_{AA}}{0.01}\right)^2 \left($	$\left(\frac{\Lambda}{1 \text{ TeV}}\right)^{-2} \left(\frac{m_{\phi}}{750 \text{ Ge}}\right)^{-2}$	\overline{V}
Γ(φ –	$\Rightarrow gg) = \frac{2k_3^2 m_{\phi}^3}{\pi \Lambda^2} = 2$	$27 \text{ MeV}\left(\frac{k_3}{0.01}\right)^2 \left(\frac{k_3}{0.01}\right)^2 \left$	$\left(\frac{\Lambda}{1 \text{ TeV}}\right)^{-2} \left(\frac{m_{\phi}}{750 \text{ Ge}}\right)^{-2}$	\overline{V}) ³
$\Gamma(\phi \rightarrow ZZ)$	$Z) \simeq \frac{k_{ZZ}^2 m_{\phi}^3}{4\pi\Lambda^2}, \Gamma(\phi)$	$\rightarrow \gamma Z$) $\simeq \frac{k_{\rm AZ}^2 m_{\phi}^3}{8\pi\Lambda^2}$,	$\Gamma(\phi \rightarrow W^+W^-) \simeq$	$\frac{k_2^2 m_{\phi}^3}{2\pi\Lambda^2}$

95% CL upper limits from 8 TeV LHC resonance searches $\sigma_{pp\to\phi} \operatorname{Br}(\phi \to \gamma\gamma) < \begin{cases} 1.5 \text{ fb for } \Gamma_{\phi} = 0.1 \text{ GeV} \\ 2.4 \text{ fb for } \Gamma_{\phi} = 75 \text{ GeV} \end{cases}$ $\sigma_{pp\to\phi} \operatorname{Br}(\phi \to \gamma Z) < 4 \text{ fb}, \quad \sigma_{pp\to\phi} \operatorname{Br}(\phi \to ZZ) < 12 \text{ fb} \\ \sigma_{pp\to\phi} \operatorname{Br}(\phi \to W^+W^-) < 40 \text{ fb}, \quad \sigma_{pp\to\phi} \operatorname{Br}(\phi \to jj) < 2.5 \text{ pb} \end{cases}$

Diphoton Excess	EFT Approach ○●○○	Dark Matter	DM detection	Conclusion
Decay width	15:			
Γ(φ –	$\Rightarrow \gamma \gamma) = \frac{k_{\rm AA}^2 m_{\phi}^3}{4\pi \Lambda^2} = 3$.4 MeV $\left(\frac{k_{AA}}{0.01}\right)^2 \left($	$\left(\frac{\Lambda}{1 \text{ TeV}}\right)^{-2} \left(\frac{m_{\phi}}{750 \text{ Ge}}\right)^{-2}$	\overline{V}
Γ(φ –	$\Rightarrow gg) = \frac{2k_3^2 m_{\phi}^3}{\pi \Lambda^2} = 2$	$27 \text{ MeV}\left(\frac{k_3}{0.01}\right)^2 \left(\frac{k_3}{0.01}\right)^2 \left$	$\left(\frac{\Lambda}{1 \text{ TeV}}\right)^{-2} \left(\frac{m_{\phi}}{750 \text{ Ge}}\right)^{-2}$	\overline{V}
$\Gamma(\phi \to Z)$	$\mathbf{Z}) \simeq \frac{k_{\rm ZZ}^2 m_{\phi}^3}{4\pi\Lambda^2}, \Gamma(\boldsymbol{\phi})$	$\rightarrow \gamma Z$) $\simeq \frac{k_{\rm AZ}^2 m_{\phi}^3}{8\pi\Lambda^2}$,	$\Gamma(\phi \rightarrow W^+W^-) \simeq$	$\frac{k_2^2 m_{\phi}^3}{2\pi\Lambda^2}$

95% CL upper limits from 8 TeV LHC resonance searches $\sigma_{pp\to\phi} \operatorname{Br}(\phi \to \gamma\gamma) < \begin{cases} 1.5 \text{ fb for } \Gamma_{\phi} = 0.1 \text{ GeV} \\ 2.4 \text{ fb for } \Gamma_{\phi} = 75 \text{ GeV} \end{cases}$ $\sigma_{pp\to\phi} \operatorname{Br}(\phi \to \gamma Z) < 4 \text{ fb}, \quad \sigma_{pp\to\phi} \operatorname{Br}(\phi \to ZZ) < 12 \text{ fb} \\ \sigma_{pp\to\phi} \operatorname{Br}(\phi \to W^+W^-) < 40 \text{ fb}, \quad \sigma_{pp\to\phi} \operatorname{Br}(\phi \to jj) < 2.5 \text{ pb} \end{cases}$

Production cross section $\sigma_{pp \to \phi}$ via gg fusion and $\gamma\gamma$ fusion can be calculated by MadGraph using NNPDF2.3 with QED corrections

Only consider ϕ decays into SM gauge bosons **Green band** corresponds to favored $\sigma_{\gamma\gamma} = 5 - 20$ fb at $\sqrt{s} = 13$ TeV **Solid lines** denote the bounds from LHC resonance searches at $\sqrt{s} = 8$ TeV

7 / 17

 $k_2 = 0$, $\Lambda = 1000 \text{ GeV}$

Only consider ϕ decays into SM gauge bosons **Green band** corresponds to favored $\sigma_{\gamma\gamma} = 5 - 20$ fb at $\sqrt{s} = 13$ TeV **Solid lines** denote the bounds from LHC resonance searches at $\sqrt{s} = 8$ TeV

 $k_2 = 0$, $\Lambda = 1000$ GeV

Only consider ϕ decays into SM gauge bosons **Green band** corresponds to favored $\sigma_{\gamma\gamma} = 5 - 20$ fb at $\sqrt{s} = 13$ TeV **Solid lines** denote the bounds from LHC resonance searches at $\sqrt{s} = 8$ TeV

 $k_2 = 0$, $\Lambda = 1000$ GeV

 $k_1 = 0$, $\Lambda = 1000 \text{ GeV}$

In the case of $k_1 = 0$, the $\phi \gamma \gamma$ coupling is relatively weak, because it solely comes from the coupling to the $SU(2)_L$ gauge fields

\Rightarrow The favored region is excluded by the 8 TeV bounds

Diphoton Excess	EFT Approach	Dark Matter ●○○○	DM detection	Conclusion O
Invisible cha	annel $\phi \to \chi \chi$			

Invisible decay channel into dark matter $\phi \rightarrow \chi \chi \implies$ increase Γ_{ϕ}

Diphoton Excess	EFT Approach	Dark Matter ●○○○	DM detection	Conclusion O
Invisible chann	el $\phi \to \chi \chi$			

Invisible decay channel into dark matter $\phi \rightarrow \chi \chi \Rightarrow$ increase Γ_{ϕ} Constraint from monojet + $\not\!\!\!\!/ _{T}$ searches at the 8 TeV LHC:

 $\sigma_{pp \to \phi} \operatorname{Br}(\phi \to \chi \chi) < 0.39 \text{ pb}$ [derived from ATLAS 1502.01518]

Invisible decay channel into dark matter $\phi \rightarrow \chi \chi \Rightarrow$ increase Γ_{ϕ} Constraint from monojet + $\not\!\!\!\!/ _{T}$ searches at the 8 TeV LHC:

 $\sigma_{pp \to \phi} \operatorname{Br}(\phi \to \chi \chi) < 0.39 \text{ pb}$ [derived from ATLAS 1502.01518]

We assume the following simplified models for the interactions between ϕ and the dark matter (DM) particle χ

• Model M1: CP-even scalar ϕ , Majorana fermion χ

$$\mathcal{L}_{\rm M1} = \mathcal{L}_{0^+} + \frac{1}{2}m_{\phi}\phi^2 + \frac{1}{2}m_{\chi}\bar{\chi}\chi + \frac{1}{2}g_{\chi}\phi\bar{\chi}\chi$$

• Model M2: CP-odd scalar ϕ , Majorana fermion χ

$$\mathcal{L}_{M2} = \mathcal{L}_{0^{-}} + \frac{1}{2}m_{\phi}\phi^{2} + \frac{1}{2}m_{\chi}\bar{\chi}\chi + \frac{1}{2}g_{\chi}\phi\bar{\chi}i\gamma_{5}\chi$$

• Model S: CP-even scalar ϕ , real scalar χ

$$\mathcal{L}_{\rm S} = \mathcal{L}_{0^+} + \frac{1}{2}m_{\phi}\phi^2 + \frac{1}{2}m_{\chi}\chi^2 + \frac{1}{2}g_{\chi}\phi\chi^2$$

• Model V: CP-even scalar ϕ , real vector χ

$$\mathcal{L}_{\rm V} = \mathcal{L}_{0^+} + \frac{1}{2}m_{\phi}\phi^2 + \frac{1}{2}m_{\chi}\chi^{\mu}\chi_{\mu} + \frac{1}{2}g_{\chi}\phi\chi^{\mu}\chi_{\mu}$$

Diphoton Excess	EFT Approach	Dark Matter ○○●○	DM detection	Conclusion
Parameter scar	ı			

We fix $\Lambda = 1$ TeV and carry out a random parameter scan for every simplified model within the following ranges:

 $0 < k_1 < 0.1, -0.1 < k_2 < 0.1, 0 < k_3 < 0.1, 10 \text{ GeV} < m_{\gamma} < 10 \text{ TeV}$

 $0 < g_{\gamma} < 10$ (Models M1 and M2), 10 GeV $< g_{\gamma} < 10$ TeV (Models S and V)

Require $\sigma_{\gamma\gamma} = 5 - 20$ fb and $\Gamma_{\phi} < 75$ GeV

Impose 8 TeV LHC bounds

 $(\gamma Z, ZZ, W^+W^-, \text{ dijet, and monojet})$

Diphoton Excess	EFT Approach	Dark Matter ○○●○	DM detection	Conclusion
Parameter scan				

We fix $\Lambda = 1$ TeV and carry out a random parameter scan for every simplified model within the following ranges:

 $0 < k_1 < 0.1, \quad -0.1 < k_2 < 0.1, \quad 0 < k_3 < 0.1, \quad 10 \text{ GeV} < m_\chi < 10 \text{ TeV}$

 $0 < g_{\chi} < 10$ (Models M1 and M2), 10 GeV $< g_{\chi} < 10$ TeV (Models S and V)

Dark Matter

DM detection

Conclusion

Zhao-Huan Yu (Melbourne)

Diphoton Excess

750 GeV Diphoton Excess and Dark Matter

Feb 2016 12 / 17
 Diphoton Excess
 EFT Approach
 Dark Matter
 DM detection
 Conclusion

 000
 0000
 0000
 0
 0
 0
 0

Indirect detection: γ -ray line spectrum searches

Fermionic DM annihilation mediated by a CP-even ϕ is velocity suppressed: no indirect detection bound for Model M1

Fermi-LAT bounds are based on 5.8-year observations of the regions R41 and R3 optimized for NFW profiles with $\gamma = 1$ and $\gamma = 1.3$, respectively [1506.00013]

HESS bound is based on 112-hour effective observation of the central Galactic halo region [1301.1173]

Zhao-Huan Yu (Melbourne)

750 GeV Diphoton Excess and Dark Matter

Feb 2016 13 / 17

 Diphoton Excess
 EFT Approach
 Dark Matter
 DM detection
 Conclusion

 000
 0000
 0000
 0000
 0
 0

Indirect detection: γ -ray and cosmic-ray searches

Effective total cross section for the annihilation channels inducing continuous spectrum γ -rays and cosmic-ray \bar{p} :

$$\langle \sigma_{\mathrm{ann}} v \rangle_{\mathrm{cont}} = \langle \sigma_{\mathrm{ann}} v \rangle_{ZZ} + \langle \sigma_{\mathrm{ann}} v \rangle_{W^+W^-} + \frac{1}{2} \langle \sigma_{\mathrm{ann}} v \rangle_{Z\gamma} + \langle \sigma_{\mathrm{ann}} v \rangle_{gg} + 2 \langle \sigma_{\mathrm{ann}} v \rangle_{\phi\phi}$$

Fermi-LAT bound is based on 6-year γ -ray observations of 15 dwarf galaxies [1503.02641]

AMS-02 bounds are derived from the cosmic-ray \bar{p}/p measurement for 2 propagation models [1504.07230]

Zhao-Huan Yu (Melbourne)

750 GeV Diphoton Excess and Dark Matter

For Model M2, DM-nucleus scattering is momentum suppressed: no direct detection bound

For Models M1, S, and V, DM-nucleus scattering is spin independent, induced by the $\chi \chi gg$ coupling due to the ϕgg coupling

LUX: 118 kg · 85.3 day exposure [1310.8214]

XENON1T: 2 t · year exposure expected [1512.07501]

Zhao-Huan Yu (Melbourne)

 10^{2}

10⁻⁵⁰

10⁻⁵¹

10¹

750 GeV Diphoton Excess and Dark Matter

⊙ satisfy the observed relic abundance & pass current DM detection bounds

Zhao-Huan Yu (Melbourne)

750 GeV Diphoton Excess and Dark Matter

Feb 2016 16 / 17

Diphoton Excess	EFT Approach	Dark Matter	DM detection	Conclusion
Summary				

- We interpret the diphoton excess as a spin-0 resonance particle φ and find that an invisible decay channel is favored by the broad width.
- Pregarding φ as a dark matter portal to the Standard Model, we study the possible connection to DM phenomenology with four simplified models.
- Ourrent line spectrum γ-ray searches have set very strong constraints on the φ-portal DM models, except for Model M1, which will be well explored by the XENON1T experiment.

Diphoton Excess	EFT Approach	Dark Matter	DM detection	Conclusion
Summary				

- We interpret the diphoton excess as a spin-0 resonance particle φ and find that an invisible decay channel is favored by the broad width.
- Pregarding φ as a dark matter portal to the Standard Model, we study the possible connection to DM phenomenology with four simplified models.
- Ourrent line spectrum γ-ray searches have set very strong constraints on the φ-portal DM models, except for Model M1, which will be well explored by the XENON1T experiment.

Thanks for your attention!