Astrophysical evidences	Cosmological considerations	Particle candidates	Conclusions

Dark matter: evidence and candidates

Zhao-Huan Yu (余钊焕)

Key Laboratory of Particle Astrophysics, Institute of High Energy Physics, CAS

March 14, 2014

中國科學院為能物昭納完所 Institute of High Energy Physics Chinese Academy of Sciences

Cosmological considerations

Particle candidates

Conclusions

Dark matter (DM) in the Universe

Dark matter exists at various scales in the Universe. (galaxies, clusters, large scale structures, cosmological scale) However, its microscopic property remains unknown.

Zhao-Huan Yu (IHEP)

Dark matter: evidence and candidates

Cosmological considerations

Particle candidates

Conclusions

Coma cluster (后发座星系团)

Cosmological considerations

Particle candidates

Conclusions

Coma cluster (后发座星系团)

Cosmological considerations

Particle candidates

Conclusions

Coma cluster (后发座星系团)

In 1933, Fritz Zwicky found that the **velocity dispersion** of galaxies in the Coma cluster was far too large to be supported by the luminous matter.

 $\label{eq:coma} \begin{array}{l} \mbox{Mass-to-light ratio} \ \Upsilon_{Coma} \sim 260 \Upsilon_{\odot} \\ \mbox{[Kent \& Gunn, 1982]} \end{array}$

Typical spiral galaxy: $\mathcal{O}(10)\Upsilon_{\odot}$

Astrophysical evidences 00●000	Cosmological considerations	Particle candidates	Conclusions

Spiral galaxies: rotation curves

In the 1970s, Vera Rubin and her collaborators measured the **rotation curves** of spiral galaxies and also found evidence for **non-luminous matter**.

Cosmological considerations

Particle candidates

Conclusions

Spiral galaxies: rotation curves

In the 1970s, Vera Rubin and her collaborators measured the **rotation curves** of spiral galaxies and also found evidence for **non-luminous matter**.

[Corbelli & Salucci, astro-ph/9909252]

Cosmological considerations

Particle candidates

Conclusions

Spiral galaxies: rotation curves

In the 1970s, Vera Rubin and her collaborators measured the **rotation curves** of spiral galaxies and also found evidence for **non-luminous matter**.

According to Newton's law, the relation between the rotation velocity v and the mass M(r) within radius r should be

$$\frac{v^2}{r} = \frac{G_N M(r)}{r^2}$$
$$M(r) = \text{constant} \implies v \propto r^{-1/2}$$

 $M(r) \propto r \Rightarrow v = \text{constant}$

[Corbelli & Salucci, astro-ph/9909252]

Cosmological considerations

Particle candidates

Conclusions

How can we explain an anomalous phenomenon?

Unexpected movement of Uranus

Cosmological considerations

Particle candidates

Conclusions

How can we explain an anomalous phenomenon?

Unexpected movement of Uranus

Perturbed by **Neptune** (discovered in 1846)

Cosmological considerations

Particle candidates

Conclusions

How can we explain an anomalous phenomenon?

Unexpected movement of Uranus

Perturbed by **Neptune** (discovered in 1846)

Search for new objects/substances responsible for it!

Cosmological considerations

Particle candidates

Conclusions

How can we explain an anomalous phenomenon?

Unexpected movement of Uranus

Perturbed by **Neptune** (discovered in 1846)

Search for new objects/substances responsible for it!

Anomalous perihelion precession of Mercury

Cosmological considerations

Particle candidates

Conclusions

How can we explain an anomalous phenomenon?

Unexpected movement of Uranus

Search for new objects/substances responsible for it!

Anomalous perihelion precession of Mercury ↓ Update Newtonian mechanics to general relativity

Cosmological considerations

Particle candidates

Conclusions

How can we explain an anomalous phenomenon?

Unexpected movement of Uranus

Perturbed by **Neptune** (discovered in 1846)

Search for new objects/substances responsible for it!

Anomalous perihelion precession of Mercury
Update Newtonian mechanics to general relativity

Modify known physical laws!

Astrophysical evidences	Cosmological considerations	Particle candidates	Conclusions
000000	00000	0000000	000

How about the anomalous phenomena here?

Modify physical laws ⇒ MOdified Newtonian Dynamics (MOND) [Milgrom, ApJ, 1983]

Difficult to coherently explain data at all scales with one model.

How about the anomalous phenomena here?

Modify physical laws ⇒ MOdified Newtonian Dynamics (MOND) [Milgrom, ApJ, 1983]

Difficult to coherently explain data at all scales with one model.

Consider new objects ⇒ MAssive Compact Halo Objects (MACHOs)

(**baryonic dark matter**: brown dwarfs, jupiters, stellar black-hole remnants, white dwarfs, neutron stars, ...)

MACHO fraction in the Galactic dark matter halo: < 8% (95% C.L.) [EROS-2 coll., astro-ph/0607207]

How about the anomalous phenomena here?

Modify physical laws ⇒ MOdified Newtonian Dynamics (MOND) [Milgrom, ApJ, 1983]

Difficult to coherently explain data at all scales with one model.

Consider new objects ⇒ MAssive Compact Halo Objects (MACHOs)

(**baryonic dark matter**: brown dwarfs, jupiters, stellar black-hole remnants, white dwarfs, neutron stars, ...)

MACHO fraction in the Galactic dark matter halo: < 8% (95% C.L.) [EROS-2 coll., astro-ph/0607207]

Consider new substances ⇒ Nonbaryonic Dark Matter (not constituted by baryons)

Cosmological considerations

Particle candidates

Conclusions

Bullet cluster: disfavor MOND

Fluid-like X-ray emitting plasma (visible matter)

Mass distribution observed by weak gravitational lensing (DM dominated)

An 8σ significance **spatial offset** of the center of the **total mass** from the center of the **baryonic mass peaks** cannot be explained with an alteration of the gravitational force law. [Clowe *et al.*, astro-ph/0608407]

Astrophysical	evidences

Particle candidates

Conclusions

Big bang theory

According to the big bang theory, ~ 13.8 billion years ago, the Universe was extremely **hot and dense**. Everything was in **thermal equilibrium** and interacted with each other.

As it expanded, the Universe cooled down. Its constituents **decoupled** from the thermal bath **one by one**.

C Addison-Wesley Longman

Dark matter: evidence and candidates

Structure formation: hot, cold, and warm dark matter

Small initial fluctuations + Gravitational instability

 \Rightarrow Decoupled matter generates cosmological structures

Baryonic matter decoupled too late.

Only baryonic matter \Rightarrow Galaxies would not be formed!

 \Rightarrow Needs **nonbaryonic dark matter** which decoupled much earlier

Structure formation: hot, cold, and warm dark matter

Small initial fluctuations + Gravitational instability

 \Rightarrow Decoupled matter generates cosmological structures

Baryonic matter decoupled too late.

Only baryonic matter \Rightarrow Galaxies would not be formed!

 \Rightarrow Needs **nonbaryonic dark matter** which decoupled much earlier

Hot dark matter (such as neutrinos): relativistic when it decoupled ⇒ structure forms by fragmentation (top-down)
Cold dark matter (CDM): nonrelativistic when it decoupled ⇒ structure forms hierarchically (bottom-up)
Galaxies are older than clusters ⇒ Favors cold dark matter theory

Structure formation: hot, cold, and warm dark matter

Small initial fluctuations + Gravitational instability

 \Rightarrow Decoupled matter generates cosmological structures

Baryonic matter decoupled too late.

Only baryonic matter \Rightarrow Galaxies would not be formed!

 \Rightarrow Needs **nonbaryonic dark matter** which decoupled much earlier

Hot dark matter (such as neutrinos): relativistic when it decoupled ⇒ structure forms by fragmentation (top-down)
Cold dark matter (CDM): nonrelativistic when it decoupled ⇒ structure forms hierarchically (bottom-up)
Galaxies are older than clusters ⇒ Favors cold dark matter theory

Milky Way dwarf satellites: ~ 20 (observed) vs. ~ 500 (CDM predicted) "Missing satellites problem" \Rightarrow Warm dark matter?

Astrophysical evidences	Cosmological considerations	Particle candidates	Conclusions
000000	00000	0000000	000

Standard cosmology: ACDM model

In the Λ CDM model, the Universe contains a **cosmological constant** Λ (dark energy) and **cold dark matter** (CDM). The evolution of the Universe is governed by the **Friedmann equation**:

$$\frac{k}{H^2R^2} = \Omega_{\Lambda} + \Omega_m + \Omega_r - 1$$

Dark matter: evidence and candidates

Cosmological considerations

Particle candidates

Conclusions

Cosmic microwave background (CMB)

 $t \sim 380\ 000\ {\rm yr},\ T \sim 3000\ {\rm K}$ Electrons + protons ightarrow hydrogen atoms Photons decoupled

 $\operatorname{cools} \Downarrow \operatorname{down}$

Today, $\sim 2.7~{\rm K}$ microwave background

CMB anisotropies encode the information from the early Universe. The shape of **anisotropy power spectrum** depends on cosmological parameters, such as Ω_{Λ} , Ω_m , Ω_b , ...

Zhao-Huan Yu (IHEP)

Dark matter: evidence and candidates

Particle candidates

Big bang nucleosynthesis (BBN): $t \sim 1 \text{ sec} - 1 \text{ hour}$

Astrophysical evidences	Cosmological considerations	Particle candidates ●0000000	Conclusions

Inferred properties of dark matter

- Dark (electrically neutral): no light emitted from it
- Nonbaryonic: BBN & CMB observations
- Long lived: survived from early eras of the Universe to now
- Colorless: otherwise, it would bind with nuclei
- Cold: structure formation theory
- Abundance: more than 80% of all matter in the Universe

 $\rho_{\rm DM}\sim 0.4~{\rm GeV}/{\rm cm}^3$ near the earth

Astrophysical evidences	Cosmological considerations	Particle candidates	Conclusions
000000	00000	0000000	000

Standard model (SM) of particle physics

$SU(3)_C \times SU(2)_L \times U(1)_Y$ gauge symmetry

Spontaneous symmetry breaking of the Higgs field

 \Rightarrow Electroweak symmetry breaking & generating fermion masses

Particle candidates

Conclusions

Cosmological considerations

Particle candidates

Conclusions

Cosmological considerations

Particle candidates

Conclusions

Cosmological considerations

Particle candidates

Conclusions

Are there dark matter candidates in the standard model?

Cosmological considerations

Particle candidates

Conclusions

Are there dark matter candidates in the standard model?

Cosmological considerations

Particle candidates

Conclusions

Cosmological considerations

Particle candidates

Conclusions

Cosmological considerations

Particle candidates

Conclusions

Astrophysical evidences	Cosmological considerations	Particle candidates 000●0000	Conclusions

WIMP miracle

The **relic density** of dark matter can be calculated by the Boltzmann $\dot{n}_{\chi} + 3Hn_{\chi} = -\langle \sigma_{\rm ann} v \rangle [n_{\chi}^2 - (n_{\chi}^{\rm EQ})^2]$ equation: $\Omega_{\chi} h^2 \simeq \frac{3 \times 10^{-27} \text{ cm}^3 \text{ s}^{-1}}{\langle \sigma_{\text{ann}} v \rangle}$ ⇒ t (ns) 10 100 1000 108 10^{-4} $m_{\chi} = 100 \text{ GeV}$ 10^{6} 10^{-6} 10^{4} 10^{-8} 102 Y 10-10 $\Omega_{\mathbf{X}}$ 100 10^{-12} 10-2 10^{-14} 10^{-4} 10^{-16} 10 T (GeV) [Feng, arXiv:1003.0904]

Astrophysical evidences	Cosmological considerations	Particle candidates 000●0000	Conclusions

WIMP miracle

The **relic density** of dark matter can be calculated by the Boltzmann $\dot{n}_{\gamma} + 3Hn_{\gamma} = -\langle \sigma_{\rm ann} v \rangle [n_{\gamma}^2 - (n_{\gamma}^{\rm EQ})^2]$ equation: $\Omega_{\chi} h^2 \simeq \frac{3 \times 10^{-27} \text{ cm}^3 \text{ s}^{-1}}{\langle \sigma_{\text{ann}} \nu \rangle}$ t (ns) Observed relic density 1000 100 108 10^{-4} $m_{\chi} = 100 \text{ GeV}$ 10^{6} 10^{-6} 10^{4} $\langle \sigma_{\rm ann} v \rangle \sim \mathcal{O}(10^{-26}) \, {\rm cm}^3 \, {\rm s}^{-1}$ 10^{-8} 102 Y 10-10 Typical value of weak interactions $\Omega_{\mathbf{X}}$ 100 10^{-12} 10-2 11 10^{-14} 10^{-4} Weakly interacting massive particles 10^{-16} 10 T (GeV) (WIMPs) are wonderful candidates [Feng, arXiv:1003.0904]

Astrophysical evidences	Cosmological considerations	Particle candidates ○○○○●○○○	Conclusions

Problem of the standard model

A ~125 GeV Higgs boson has been discovered at the LHC [ATLAS Coll., 1207.7214; CMS Coll., 1207.7235]

In the standard model, the quantum correction of the Higgs boson mass Δm_{H}^{2} suffers from the quadratic divergence

↓ Hierarchy problem ↓ New physics at the TeV scale (Supersymmetry, extra dimensions, little Higgs, ...) ↓

New physics models often involve candidates for WIMP dark matter

Astrophysical	evidences

Particle candidates

Supersymmetry (SUSY)

A symmetry between fermions and bosons

Astrophysical	evidences

Particle candidates

Supersymmetry (SUSY)

A symmetry between fermions and bosons

Not to violate baryon number *B* or lepton number *L* \Rightarrow **R-parity conserved SUSY** $[P_R = (-1)^{3(B-L)+2s}]$ \Rightarrow The **lightest SUSY particle (LSP)** is stable \Rightarrow An attractive candidate for **non-baryonic dark matter**

Astrophysical evidences	Cosmological considerations	Particle candidates ○○○○○○●○	Conclusions

Astrophysical evidences	Cosmological considerations	Particle candidates ○○○○○○●○	Conclusions

Astrophysical	evidences

Particle candidates

Conclusions

Astrophysical	evidences

Particle candidates

Conclusions

Astrophysical	evidences

Particle candidates

Conclusions

SUSY particles

Astrophysical	evidences

Particle candidates

Conclusions

SUSY particles

Astrophysical	evidences

Particle candidates

Conclusions

SUSY particles

Astrophysical evidences	Cosmological considerations	Particle candidates ○○○○○○●	Conclusions

More candidates

Astrophysical evidences	Cosmological considerations	Particle candidates	Conclusions ●○○

Conclusions and discussions

Dark matter connects our knowledge of the Universe from the largest to the smallest scales.

Astrophysical evidences	Cosmological considerations	Particle candidates	Conclusions ○●○

Conclusions and discussions

Current and near future dark matter searching experiments are promising to solve the mystery of dark matter.

Astrophysical evidences	Cosmological considerations	Particle candidates	Conclusions
			000

Thanks for your attentions!