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Dark matter (DM) in the Universe

Dark matter exists at various scales in the Universe.
(galaxies, clusters, large scale structures, cosmological scale)

However, its microscopic property remains unknown.
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Coma cluster (后发座星系团)

后发猎犬

牧夫北冕

室女

大熊

狮子

小狮

In 1933, Fritz Zwicky found that the velocity
dispersion of galaxies in the Coma cluster was
far too large to be supported by the luminous
matter.

Mass-to-light ratio ΥComa ∼ 260Υ⊙
[Kent & Gunn, 1982]

Typical spiral galaxy: O(10)Υ⊙
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Spiral galaxies: rotation curves

In the 1970s, Vera Rubin and her
collaborators measured the rotation
curves of spiral galaxies and also
found evidence for non-luminous
matter.

Triangulum galaxy M33

dark matter halo

stellar disk

gas

M33

[Corbelli & Salucci, astro-ph/9909252]

According to Newton’s law, the relation
between the rotation velocity v and the
mass M(r) within radius r should be

.

......
v2

r
=

GN M(r)
r2

M(r) = constant ⇒ v ∝ r−1/2

M(r)∝ r ⇒ v = constant
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How can we explain an anomalous phenomenon?

Unexpected movement of Uranus

⇓
Perturbed by Neptune (discovered in 1846)

Search for new objects/substances responsible for it!

Anomalous perihelion precession of Mercury
⇓

Update Newtonian mechanics to general relativity

Modify known physical laws!
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How about the anomalous phenomena here?

Modify physical laws ⇒ MOdified Newtonian Dynamics (MOND)
[Milgrom, ApJ, 1983]

Difficult to coherently explain data at all scales with one model.

Consider new objects ⇒ MAssive Compact Halo Objects (MACHOs)
(baryonic dark matter: brown dwarfs, jupiters, stellar black-hole

remnants, white dwarfs, neutron stars, ...)
MACHO fraction in the Galactic dark matter halo: < 8% (95% C.L.)

[EROS-2 coll., astro-ph/0607207]

Consider new substances ⇒ Nonbaryonic Dark Matter
(not constituted by baryons)
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Bullet cluster: disfavor MOND

Fluid-like X-ray
emitting plasma
(visible matter)

Mass distribution
observed by weak
gravitational lensing
(DM dominated)

An 8σ significance spatial offset of the center of the total mass from
the center of the baryonic mass peaks cannot be explained with an
alteration of the gravitational force law. [Clowe et al., astro-ph/0608407]
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Big bang theory

According to the big
bang theory, ∼ 13.8
billion years ago, the
Universe was extremely
hot and dense. Every-
thing was in thermal
equilibrium and inter-
acted with each other.

As it expanded, the
Universe cooled down.
Its constituents decou-
pled from the thermal
bath one by one.
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Structure formation: hot, cold, and warm dark matter

Small initial fluctuations + Gravitational instability
⇒ Decoupled matter generates cosmological structures

Baryonic matter decoupled too late.
Only baryonic matter ⇒ Galaxies would not be formed!
⇒ Needs nonbaryonic dark matter which decoupled much earlier

Hot dark matter (such as neutrinos): relativistic when it decoupled
⇒ structure forms by fragmentation (top-down)

Cold dark matter (CDM): nonrelativistic when it decoupled
⇒ structure forms hierarchically (bottom-up)

Galaxies are older than clusters ⇒ Favors cold dark matter theory

Milky Way dwarf satellites: ∼ 20 (observed) vs. ∼ 500 (CDM predicted)
“Missing satellites problem” ⇒ Warm dark matter?
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Standard cosmology: ΛCDM model

0.0 0.5 1.0

0.0

0.5

1.0

1.5

2.0

F
la
tBAO

CMB

SNe

No Big Bang

[Kowalski et al., 0804.4142][WMAP Science Team]

In the ΛCDM model, the Universe contains
a cosmological constant Λ (dark energy)
and cold dark matter (CDM).
The evolution of the Universe is governed
by the Friedmann equation:

.

......
k

H2R2 = ΩΛ+Ωm+Ωr − 1
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Cosmic microwave background (CMB)
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Planck Coll.
1303.5062

WMAP Planck

Dark matter
22.7% 26.8%

Ordinary matter
4.5% 4.9%

Dark energy
72.8% 68.3%

.

.

t ∼ 380 000 yr, T ∼ 3000 K
Electrons + protons → hydrogen atoms

Photons decoupled
cools ⇓ down.

. Today, ∼ 2.7 K microwave background

CMB anisotropies encode the information from the early Universe.
The shape of anisotropy power spectrum depends on cosmological
parameters, such as ΩΛ, Ωm, Ωb, ...
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Big bang nucleosynthesis (BBN): t ∼ 1 sec− 1 hour
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[Cyburt et al., 0808.2818]

Primordial abundances of light elements
⇓

Baryon density Ωb
(consistent with CMB observations)

⇓
The majority of matter is nonbaryonic
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Inferred properties of dark matter

Dark (electrically neutral): no light emitted from it

Nonbaryonic: BBN & CMB observations

Long lived: survived from early eras of the Universe to now

Colorless: otherwise, it would bind with nuclei

Cold: structure formation theory

Abundance: more than 80% of all matter in the Universe

ρDM ∼ 0.4 GeV/cm3 near the earth
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Standard model (SM) of particle physics

Higgs Boson

Photon Weak Gluons

Quarks
Leptons

Bosons

e  μ  τ ν  ν  νe     μ     τ q

gW Zγ

H

SU(3)C × SU(2)L × U(1)Y gauge symmetry
Spontaneous symmetry breaking of the Higgs field

⇒ Electroweak symmetry breaking & generating fermion masses
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Are there dark matter candidates in the standard model?

Nonbaryonic
Colorless
Electrically neutral
Long lived
Massive
Hot DM: neutrinos
Cold DM: none
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WIMP miracle

[Feng, arXiv:1003.0904]

The relic density of dark matter can be calculated by the Boltzmann
equation: ṅχ + 3Hnχ =−
σannv

�
[n2
χ − (nEQ

χ )
2]

⇒ Ωχh2 ≃ 3× 10−27 cm3 s−1

σannv
�

Observed relic density
⇓


σannv
�∼O(10−26) cm3 s−1

Typical value of weak interactions
⇓

Weakly interacting massive particles

(WIMPs) are wonderful candidates
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Problem of the standard model

A ∼125 GeV Higgs boson has been discovered at the LHC
[ATLAS Coll., 1207.7214; CMS Coll., 1207.7235]

In the standard model, the quantum correction of the Higgs boson mass
∆m2

H suffers from the quadratic divergence
⇓

Hierarchy problem
⇓

New physics at the TeV scale
(Supersymmetry, extra dimensions, little Higgs, ...)

⇓
New physics models often involve candidates for WIMP dark matter

Zhao-Huan Yu (IHEP) Dark matter: evidence and candidates Mar 2014 17 / 23



. . . . . .
Astrophysical evidences

. . . . .
Cosmological considerations

. . . . . . . .
Particle candidates

. . .
Conclusions

Supersymmetry (SUSY)

A symmetry between fermions and bosons
.

......

e, µ, τ leptons↔ sleptons ẽ, µ̃, τ̃
νe, νµ, ντ neutrinos↔ sneutrinos ν̃e, ν̃µ, ν̃τ

d, u, s, c, b, t quarks↔ squarks d̃, ũ, s̃, c̃, b̃, t̃
g gluon↔ gluino g̃

W±, H± charged bosons↔ charginos χ̃±1 , χ̃±2
B, W 3, H0

1 , H0
2 neutral bosons↔ neutralinos χ̃0

1 , χ̃0
2 , χ̃0

3 , χ̃0
4

Not to violate baryon number B or lepton number L

⇒ R-parity conserved SUSY [PR = (−1)3(B−L)+2s]
⇒ The lightest SUSY particle (LSP) is stable

⇒ An attractive candidate for non-baryonic dark matter
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νe, νµ, ντ neutrinos↔ sneutrinos ν̃e, ν̃µ, ν̃τ

d, u, s, c, b, t quarks↔ squarks d̃, ũ, s̃, c̃, b̃, t̃
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SUSY particles

Nonbaryonic
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[Baer & Tata, 0805.1905]
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Dark matter connects our knowledge of the Universe from the largest to
the smallest scales.
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Current and near future dark matter searching experiments are promising
to solve the mystery of dark matter.
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Thanks for your attentions!
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