DM searches at colliders	Mono- <i>Z</i> signature	Sensitivity	Beam polarization	Conclusions ○	Backups

Searching for dark matter in the mono-Z channel at high energy e^+e^- colliders

Zhao-Huan YU (余钊焕)

Institute of High Energy Physics, CAS

with Xiao-Jun BI, Qi-Shu YAN, and Peng-Fei YIN

中国科学院為能物昭和完所 Institute of High Energy Physics Chinese Academy of Sciences Work in progress

December 21, 2013

DM searches at colliders	Mono-Z signature	Sensitivity	Beam polarization	Conclusions	Backups
•000					

Dark matter (DM) searches at colliders

Social dark matter Accompanied by other new particles Complicated decay chains Decay products of other particles Various final states (jets + leptons + $\not{\!\!E}_T$, ...)

Maverick dark matter

DM particle is the only new particle reachable at the collision energy

Direct production

Mono- $X + \not\!\!\! E$ final states

(monojet, mono- γ , mono-W/Z, ...)

(From Rocky Kolb's talk)

DM searches at colliders ○●○○	Mono -Z signature	Sensitivity 00000000	OO OO	Conclusions ○	Backups 000
			•		
Studies on	DIVI direct	product	cions at co	olliders	
 Birkedal, Matchev and Pei QH. Cao, CR. Chen, v. Beltran, Hooper, Kolb, Kr Goodman, Ibe, Rajaraman Y. Bai, Fox and Harnik, an Fox, Harnik, Kopp and Y. Kamenik and Zupan, arXi J. Wang, C. S. Li, D. Y. S Rajaraman, Shepherd, Tai Fox, Harnik, Kopp and Y. K. Cheung, PY. Tseng, H. An, X. Ji and LT. W Bartels, Berggren and List Y. Bai and Tait, arXiv:120 Bell, Dent, Galea, Jacques F. P. Huang, C. S. Li, J. V. Dreiner, Huck, Kramer, SC Chae and Perelstein, arXiv Fox and Williams, arXiv:12 Carpenter, Nelson, Shimm R. Ding, Y. Liao, JY. Li T. Lin, E. W. Kolb and L. Nelson, Carpenter, Cotta, N. Zhou, Berge, L. Wang, Z. H. Yu, QS. Yan and Artoni, T. Lin, Penning, S H. An, LT. Wang and H Petrov and Shepherd, arXi Bell, Y. Cai and Mediana. C. P. C. 	elstein, arXiv:hep-ph/0403 C. S. Li and H. Zhang, arXi usberg and Tait, arXiv:1002 Shepherd, Tait and HB Xiv:1005.3797 (monojet, h Tsai, arXiv:1103.0240 (moi r:1107.0623 (mono-t, hadre hao and H. Zhang, arXiv:110 Tsai, arXiv:1109.4398 (moi YL. S. Tsai and TC. Yi ang, arXiv:1206.6639 (monoph 8.4361 [hep-ph] (mono-W, , Krauss and Weiler, arXiv: 1211.6390 (monojet, hadron in, Tait and Whiteson, arXi til.6390 (monojet, hadron in, Tait and Whiteson, arXiv: 116.330 Johnstone and Tait, arXiv: 110.303.633 Johnstone and Tait, arXiv: 1211.6390 (monojet, hadron in, Tait and Whiteson, arXiv: 1203.633 Johnstone and Whiteson, arXiv: 1303.633 Johnstone and Whiteson, arXiv: 1311.511 (mono-Higgs, rXiv:1311.6169 (jj/(l + E _f)	D04 (monophoton, e^{i} v:v012.4511 (monoj 2.4137 (monojet, hac Yu, arXiv:1005.128' adron colliders). nophoton, $e^{+}e^{-}$ colli on colliders). 107.2048 (monophoton, l 1096 (monojet, had nojet, monophoton, l 109, 2048 (monophoton, l 109, 2048 (monophoton, l 120, 2021 (monojet, had rocolliders). 1209.0231 (mono-Z, v:1212.0.195 (monophoton, e^{+}e^{-} colliders). v:1212.0.352 (mono- 2.4034 (monojet, had 3 (mono-bjet, hb/ti rxXiv:1307.5064 [hep- 1307.7834 (monoton, e^{+}e^{-} 1307.7834 (monoton), e^{+}e^{-}	te^- colliders). st, monophoton, mono-H iron colliders). 5 (monojet, hadron collid ders). on, hadron colliders). ron colliders). inadron colliders). (monojet, hadron colliders). (monojet, hadron colliders). hoton, hadron colliders). hoton, e^+e^- colliders). z, hadron colliders). ron colliders). ph] (monophoton, hadron hadron colliders). ph] (monophoton, hadron hadron colliders). $t, b\bar{b}/t\bar{t} + \vec{k}_T$, hadron col dron colliders).	iggs, hadron colliders ers). ers). n colliders). lliders).).

Carpenter, DiFranzo, Mulhearn, Shimmin, Tulin and Whiteson, arXiv:1312.2592 (mono-Higgs, hadron colliders).

DM searches at colliders	Mono-Z signature	Sensitivity	Beam polarization	Conclusions	Backups
0000					

DM direct productions at colliders

Zhao-Huan YU (IHEP) Searching for dark matter in

Searching for dark matter in the mono-Z channel at e^+e^- colliders

Dec 2013 4 / 21

DM searches at colliders	Mono-Z signature	Sensitivity	Beam polarization	Conclusions	Backups
0000					

DM direct productions at colliders

DM searches at colliders	Mono-Z signature ●○	Sensitivity 00000000	Beam polarization	Conclusions O	Backups

Mono-Z signature: DM couplings to $ZZ/Z\gamma$

The mono-Z channel at high energy e^+e^- collider can be sensitive to **the DM coupling to** $ZZ/Z\gamma$.

Assuming the DM particle χ is a Dirac fermion, we consider the following effective operators:

$$\begin{split} \mathcal{O}_{\mathrm{F1}} &= \frac{1}{\Lambda_{1}^{3}} \bar{\chi} \chi B_{\mu\nu} B^{\mu\nu} + \frac{1}{\Lambda_{2}^{3}} \bar{\chi} \chi W^{a}_{\mu\nu} W^{a\mu\nu} \\ &\supset \bar{\chi} \chi (G_{\mathrm{ZZ}} Z_{\mu\nu} Z^{\mu\nu} + G_{\mathrm{AZ}} A_{\mu\nu} Z^{\mu\nu}) \\ \mathcal{O}_{\mathrm{F2}} &= \frac{1}{\Lambda_{1}^{3}} \bar{\chi} i \gamma_{5} \chi B_{\mu\nu} \tilde{B}^{\mu\nu} + \frac{1}{\Lambda_{2}^{3}} \bar{\chi} i \gamma_{5} \chi W^{a}_{\mu\nu} \tilde{W}^{a\mu\nu} \\ &\supset \bar{\chi} i \gamma_{5} \chi (G_{\mathrm{ZZ}} Z_{\mu\nu} \tilde{Z}^{\mu\nu} + G_{\mathrm{AZ}} A_{\mu\nu} \tilde{Z}^{\mu\nu}) \\ \mathcal{O}_{\mathrm{FH}} &= \frac{1}{\Lambda^{3}} \bar{\chi} \chi (D_{\mu} H)^{\dagger} D_{\mu} H \rightarrow \frac{m_{Z}^{2}}{2\Lambda^{3}} \bar{\chi} \chi Z_{\mu} Z^{\mu} \end{split}$$

$$\begin{split} G_{ZZ} &\equiv \frac{\sin^2 \theta_W}{\Lambda_1^3} + \frac{\cos^2 \theta_W}{\Lambda_2^3} \\ G_{AZ} &\equiv 2 \sin \theta_W \cos \theta_W \left(\frac{1}{\Lambda_2^3} - \frac{1}{\Lambda_1^3}\right) \end{split}$$

6 / 21

DM searches at colliders	Mono-Z signature ⊙●	Sensitivity	Beam polarization	Conclusions	Backups

Mono-Z signature: DM couplings to e^+e^-

This channel can also be sensitive to the DM coupling to e^+e^- .

We consider the following effective operators:

$$\mathcal{O}_{\rm FP} = \frac{1}{\Lambda^2} \bar{\chi} \gamma_5 \chi \bar{e} \gamma_5 e, \quad \mathcal{O}_{\rm FA} = \frac{1}{\Lambda^2} \bar{\chi} \gamma^\mu \gamma_5 \chi \bar{e} \gamma_\mu \gamma_5 e$$

DM searches at colliders	Mono- <i>Z</i> signature	Sensitivity •0000000	Beam polarization	Conclusions O	Backups
MC simulati	ion				

Simulation tools: FeynRules \rightarrow MadGraph \rightarrow PYTHIA \rightarrow PGS

SiD/ILD-like detector:

ECAL energy resolution
$$\frac{\Delta E}{E} = \frac{17\%}{\sqrt{E/\text{GeV}}} \oplus 1\%$$

HCAL energy resolution $\frac{\Delta E}{E} = \frac{30\%}{\sqrt{E/\text{GeV}}}$

Collision energies of future e^+e^- colliders:

 $\sqrt{s} = 250 \,\text{GeV}$: "Higgs factory" (CEPC/TLEP, ILC) $\sqrt{s} = 500 \,\text{GeV}$: typical ILC $\sqrt{s} = 1 \,\text{TeV}$: upgraded ILC

DM searches at colliders	Mono - <i>Z</i> signature	Sensitivity 0000000	Beam polarization	Conclusions O	Backups

SM backgrounds: $e^+e^- \rightarrow \ell^+\ell^- \bar{\nu}\nu$, $e^+e^- \rightarrow \tau^+\tau^-$, $e^+e^- \rightarrow \tau^+\tau^- \bar{\nu}\nu$

DM searches at colliders	Mono- <i>Z</i> signature	Sensitivity 0000000	Beam polarization	Conclusions O	Backups

SM backgrounds: $e^+e^- \rightarrow \ell^+\ell^- \bar{\nu}\nu$, $e^+e^- \rightarrow \tau^+\tau^-$, $e^+e^- \rightarrow \tau^+\tau^- \bar{\nu}\nu$

Reconstructing the *Z* **boson**: require only 2 leptons (*e*'s or μ 's) with $p_{\rm T} > 10$ GeV and $|\eta| < 3$, and they are opposite sign and same flavor; **no any other particle;**

DM searches at colliders	Mono- <i>Z</i> signature	Sensitivity ○●○○○○○○	Beam polarization	Conclusions ○	Backups

SM backgrounds: $e^+e^- \rightarrow \ell^+\ell^- \bar{\nu}\nu$, $e^+e^- \rightarrow \tau^+\tau^-$, $e^+e^- \rightarrow \tau^+\tau^- \bar{\nu}\nu$

Reconstructing the *Z* **boson**: require only 2 leptons (*e*'s or μ 's) with $p_{\rm T} > 10$ GeV and $|\eta| < 3$, and they are opposite sign and same flavor; **no any other particle**; require the invariant mass of the 2 leptons satisfying $|m_{\ell\ell} - m_Z| < 5$ GeV.

DM searches at colliders	Mono - <i>Z</i> signature	Sensitivity 0000000	Beam polarization	Conclusions O	Backups

SM backgrounds: $e^+e^- \rightarrow \ell^+\ell^- \bar{\nu}\nu$, $e^+e^- \rightarrow \tau^+\tau^-$, $e^+e^- \rightarrow \tau^+\tau^- \bar{\nu}\nu$

Reconstructing the *Z* **boson**: require only 2 leptons (*e*'s or μ 's) with $p_{\rm T} > 10$ GeV and $|\eta| < 3$, and they are opposite sign and same flavor; **no any other particle**; require the invariant mass of the 2 leptons satisfying $|m_{\ell\ell} - m_Z| < 5$ GeV.

Reconstructing the recoil mass: $m_{\text{recoil}} = \sqrt{(p_{e^+} + p_{e^-} - p_{\ell_1} - p_{\ell_2})^2};$

Zhao-Huan YU (IHEP)

Searching for dark matter in the mono-Z channel at e^+e^- colliders

DM searches at colliders	Mono - <i>Z</i> signature	Sensitivity ○●○○○○○○	Beam polarization	Conclusions ○	Backups

SM backgrounds: $e^+e^- \rightarrow \ell^+\ell^- \bar{\nu}\nu$, $e^+e^- \rightarrow \tau^+\tau^-$, $e^+e^- \rightarrow \tau^+\tau^- \bar{\nu}\nu$

Reconstructing the *Z* **boson**: require only 2 leptons (*e*'s or μ 's) with $p_{\rm T} > 10$ GeV and $|\eta| < 3$, and they are opposite sign and same flavor; **no any other particle**; require the invariant mass of the 2 leptons satisfying $|m_{\ell\ell} - m_Z| < 5$ GeV.

Reconstructing the recoil mass: $m_{\text{recoil}} = \sqrt{(p_{e^+} + p_{e^-} - p_{\ell_1} - p_{\ell_2})^2}$; veto events with $m_{\text{recoil}} < 140$ GeV.

Zhao-Huan YU (IHEP)

Searching for dark matter in the mono-Z channel at e^+e^- colliders

DM searches at colliders	Mono - <i>Z</i> signature	Sensitivity 00●00000	Beam polarization	Conclusions O	Backups

Cross sections σ and signal significances S after each cut $(\sqrt{s} = 500 \text{ GeV}, \text{ with an integrated luminosity of } 100 \text{ fb}^{-1})$

	$\ell^+\ell^-\bar\nu\nu$	$\tau^+ \tau^-$	$\tau^+\tau^-\bar{\nu}\nu$	\mathcal{O}	F1	\mathcal{O}	F2	\mathcal{O}	FH	\mathcal{O}	FP	\mathcal{O}	FA
	σ	σ	σ	σ	${\mathcal S}$								
Cut 1	306	20.4	2.85	2.65	1.46	2.94	1.61	2.47	1.36	3.24	1.78	2.86	1.57
Cut 2	235	11.8	1.29	2.52	1.60	2.82	1.78	2.39	1.51	3.19	2.01	2.19	1.38
Cut 3	23.9	0.410	0.0495	2.41	4.67	2.70	5.18	2.29	4.44	3.06	5.84	2.09	4.07
Cut 4	16.0	0.410	0.0495	2.39	5.51	2.70	6.16	2.19	5.08	3.06	6.92	2.09	4.86
Cut 5	12.1	0.410	0.0471	2.19	5.69	2.42	6.24	2.11	5.50	2.95	7.47	2.01	5.25

$$(\sigma \text{ in fb}, S = S/\sqrt{S+B})$$

DM searches at colliders	Mono - <i>Z</i> signature	Sensitivity	Beam polarization	Conclusions O	Backups
	analı 7 i	::			

SM backgrounds: $e^+e^- \rightarrow jj\bar{v}v$, $e^+e^- \rightarrow jj\ell v$, $e^+e^- \rightarrow t\bar{t}$

DM searches at colliders	Mono - <i>Z</i> signature	Sensitivity	Beam polarization	Conclusions O	Backups
Hadron chai	nnel: $Z \rightarrow $	jj			

SM backgrounds: $e^+e^- \rightarrow jj\bar{v}v$, $e^+e^- \rightarrow jj\ell v$, $e^+e^- \rightarrow t\bar{t}$

Reconstructing the *Z* **boson**: require only 2 jets with $p_T > 10$ GeV and $|\eta| < 3$; no any other particle;

DM searches at colliders	Mono- <i>Z</i> signature	Sensitivity ○○○●○○○○	Beam polarization	Conclusions O	Backups
	analı 7	::			

SM backgrounds:
$$e^+e^- \rightarrow jj\bar{v}v$$
, $e^+e^- \rightarrow jj\ell v$, $e^+e^- \rightarrow t\bar{t}$

Reconstructing the *Z* **boson**: require only 2 jets with $p_T > 10$ GeV and $|\eta| < 3$; **no any other particle**; require the invariant mass of the 2 jets satisfying 40 GeV $< m_{jj} < 95$ GeV.

DM searches at colliders	Mono- <i>Z</i> signature	Sensitivity ○○○●○○○○	Beam polarization	Conclusions O	Backups
	1 7				

SM backgrounds:
$$e^+e^- \rightarrow jj\bar{v}v$$
, $e^+e^- \rightarrow jj\ell v$, $e^+e^- \rightarrow t\bar{t}$

Reconstructing the *Z* **boson**: require only 2 jets with $p_T > 10$ GeV and $|\eta| < 3$; **no any other particle**; require the invariant mass of the 2 jets satisfying 40 GeV $< m_{jj} < 95$ GeV.

Reconstructing the recoil mass: $m_{\text{recoil}} = \sqrt{(p_{e^+} + p_{e^-} - p_{j_1} - p_{j_2})^2}$;

Zhao-Huan YU (IHEP)

Searching for dark matter in the mono-Z channel at e^+e^- colliders

DM searches at colliders	Mono- <i>Z</i> signature	Sensitivity ○○○●○○○○	Beam polarization	Conclusions O	Backups
	1 7				

SM backgrounds:
$$e^+e^- \rightarrow jj\bar{v}v$$
, $e^+e^- \rightarrow jj\ell v$, $e^+e^- \rightarrow t\bar{t}$

Reconstructing the *Z* **boson**: require only 2 jets with $p_T > 10$ GeV and $|\eta| < 3$; **no any other particle**; require the invariant mass of the 2 jets satisfying 40 GeV $< m_{jj} < 95$ GeV.

Reconstructing the recoil mass: $m_{\text{recoil}} = \sqrt{(p_{e^+} + p_{e^-} - p_{j_1} - p_{j_2})^2}$; veto events with $m_{\text{recoil}} < 200$ GeV.

DM searches at colliders	Mono -Z signature	Sensitivity ○○○○●○○○	Beam polarization	Conclusions O	Backups
Hadron chan	nnel: $Z \rightarrow $	jj			

Cross sections σ and signal significances S after each cut $(\sqrt{s} = 500 \text{ GeV}, \text{ with an integrated luminosity of } 100 \text{ fb}^{-1})$

	jjvv	jjℓv	tĪ	\mathcal{O}	F1	\mathcal{O}	F2	\mathcal{O}	FH	\mathcal{O}	FP	\mathcal{O}	FA
	σ	σ	σ	σ	${\mathcal S}$								
Cut 1	245	131	1.74	18.9	9.47	20.9	10.4	17.8	8.94	22.1	11.1	18.4	9.24
Cut 2	207	93.2	1.56	18.0	10.0	20.0	11.2	17.2	9.64	21.8	12.1	13.9	7.84
Cut 3	160	56.6	0.270	17.2	11.2	19.2	12.5	16.6	10.8	20.7	13.5	13.3	8.76
Cut 4	115	14.9	0.264	16.3	13.4	18.7	15.3	14.6	12.1	20.7	16.9	13.3	11.1
Cut 5	92.6	2.91	0.253	15.1	14.3	17.1	16.1	14.1	13.5	20.1	18.7	12.9	12.3

 $(\sigma \text{ in fb}, S = S/\sqrt{S+B})$

DM searches at colliders	Mono - <i>Z</i> signature	Sensitivity 00000000	Beam polarization	Conclusions O	Backups

3σ sensitivity: DM couplings to $ZZ/Z\gamma$

Searching for dark matter in the mono-Z channel at e^+e^- colliders

Dec 2013 13 / 21

3σ sensitivity affected by the Λ_1 - Λ_2 relation

$$\begin{split} \Lambda &= \Lambda_1 = \Lambda_2: \text{ only the } \chi \chi ZZ \text{ coupling contributes.} \\ \Lambda &= \Lambda_1 = -\Lambda_2: \text{ the } \chi \chi \gamma Z \text{ coupling is dominant.} \\ \Lambda &= \Lambda_1, \ \Lambda_2 \to \infty: \text{ the } \chi \chi \gamma Z \text{ coupling is dominant.} \\ \Lambda &= \Lambda_2, \ \Lambda_1 \to \infty: \text{ the } \chi \chi ZZ \text{ and the } \chi \chi \gamma Z \text{ couplings are comparable.} \end{split}$$

DM searches at colliders	Mono - <i>Z</i> signature	Sensitivity	Beam polarization	Conclusions O	Backups

3σ sensitivity: DM couplings to e^+e^-

(with an integrated luminosity of 1000 fb⁻¹; Fermi upper limits come from arXiv:1310.0828)

Zhao-Huan YU (IHEP) Sea

Searching for dark matter in the mono-Z channel at e^+e^- colliders Dec

Dec 2013 15 / 21

DM searches at colliders	Mono -Z signature	Sensitivity	Beam polarization ●○	Conclusions O	Backups

DM searches at colliders	Mono -Z signature	Sensitivity	Beam polarization ●○	Conclusions O	Backups

The dashed box indicates the polarization ranges achievable at the ILC: $-0.8 \le P_{e^-} \le +0.8, \quad -0.3 \le P_{e^+} \le +0.3.$

In order to obtain the maximal signal significance,

DM searches at colliders	Mono -Z signature	Sensitivity	Beam polarization ●○	Conclusions O	Backups

The dashed box indicates the polarization ranges achievable at the ILC: $-0.8 \le P_{e^-} \le +0.8, \quad -0.3 \le P_{e^+} \le +0.3.$

In order to obtain the maximal signal significance,

▲ $(P_{e^-}, P_{e^+}) = (+0.8, -0.3)$ is optimal for \mathcal{O}_{F1} , \mathcal{O}_{F2} , \mathcal{O}_{FH} , \mathcal{O}_{FA} ;

DM searches at colliders	Mono -Z signature	Sensitivity	Beam polarization ●○	Conclusions O	Backups

The dashed box indicates the polarization ranges achievable at the ILC: $-0.8 \le P_{e^-} \le +0.8, \quad -0.3 \le P_{e^+} \le +0.3.$

In order to obtain the maximal signal significance,

▲ $(P_{e^-}, P_{e^+}) = (+0.8, -0.3)$ is optimal for \mathcal{O}_{F1} , \mathcal{O}_{F2} , \mathcal{O}_{FH} , \mathcal{O}_{FA} ; ★ $(P_{e^-}, P_{e^+}) = (+0.8, +0.3)$ is optimal for \mathcal{O}_{FP} .

DM searches at colliders	Mono- <i>Z</i> signature	Sensitivity	Beam polarization ○●	Conclusions ○	Backups

Sensitivity improvements

Signal significances without and **with** polarized beams for the benchmark points at $\sqrt{s} = 500 \text{ GeV} (100 \text{ fb}^{-1})$:

Lepton channel $\ell^+\ell^- + \not\!\!\! E$

	$\mathcal{S}_{\mathrm{unpol}}$	$\mathcal{S}_{\mathrm{pol}}$	$\mathcal{S}_{\mathrm{pol}}/\mathcal{S}_{\mathrm{unpol}}$
$\mathcal{O}_{\mathrm{F1}}$	5.69	10.1	1.78
$\mathcal{O}_{\mathrm{F2}}$	6.24	10.9	1.75
$\mathcal{O}_{\mathrm{FH}}$	5.50	9.70	1.76
$\mathcal{O}_{\mathrm{FP}}$	7.47	13.4	1.79
$\mathcal{O}_{\mathrm{FA}}$	5.25	9.29	1.77

Hadron channel $jj + \not\!\!\! E$

	$\mathcal{S}_{ ext{unpol}}$	\mathcal{S}_{pol}	$\mathcal{S}_{\mathrm{pol}}/\mathcal{S}_{\mathrm{unpol}}$
$\mathcal{O}_{\mathrm{F1}}$	14.3	26.0	1.82
$\mathcal{O}_{\mathrm{F2}}$	16.1	28.6	1.78
$\mathcal{O}_{\mathrm{FH}}$	13.5	24.8	1.84
$\mathcal{O}_{\mathrm{FP}}$	18.7	34.4	1.84
$\mathcal{O}_{\mathrm{FA}}$	12.3	23.0	1.87

Zhao-Huan YU (IHEP)

Searching for dark matter in the mono-Z channel at e^+e^- colliders

Dec 2013 17 / 21

DM searches at colliders	Mono - <i>Z</i> signature	Sensitivity	Beam polarization	Conclusions •	Backups
Conclusions	and discus	ssions			

- In addition to DM direct and indirect detection, DM searches at colliders provide an independent and complementary way to explore the microscopic nature of DM particles.
- The mono-Z searching channel at e⁺e⁻ colliders is sensitive to the DM couplings to ZZ/Zγ and to e⁺e⁻.
- **9 Polarized beams** are helpful to improve the signal significance.

DM searches at colliders	Mono - <i>Z</i> signature	Sensitivity	Beam polarization	Conclusions •	Backups
Conclusions	and discus	ssions			

- In addition to DM direct and indirect detection, DM searches at colliders provide an independent and complementary way to explore the microscopic nature of DM particles.
- The mono-Z searching channel at e⁺e⁻ colliders is sensitive to the DM couplings to ZZ/Zγ and to e⁺e⁻.
- **Operation** Polarized beams are helpful to improve the signal significance.

Thanks for your attentions!

DM searches at colliders	Mono - <i>Z</i> signature	Sensitivity 00000000	Beam polarization	Conclusions ○	Backups ●○○

Backup slides

DM searches at colliders	Mono - <i>Z</i> signature	Sensitivity	Beam polarization	Conclusions O	Backups ○●○

Mono-*Z*: e^+e^- colliders vs. LHC

[Carpenter, Nelson, Shimmin, Tait and Whiteson, arXiv:1212.3352]

DM searches at colliders	Mono- <i>Z</i> signature	Sensitivity	Beam polarization	Conclusions ○	Backups ○○●

DM couplings to e^+e^- : mono-Z vs. monophoton

Zhao-Huan YU (IHEP)

Searching for dark matter in the mono-Z channel at e^+e^- colliders