Dark matter	Collider detection	Monophoton signature	Mono-Z signature	Conclusions

Dark matter searches at high energy colliders

Zhao-Huan YU (余钊焕)

Key Laboratory of Particle Astrophysics, Institute of High Energy Physics, CAS

December 13, 2013

中國科學院為能物昭納完施 Institute of High Energy Physics Chinese Academy of Sciences

Zhao-Huan YU (IHEP)

Dark matter searches at high energy colliders

Conclusions

Dark matter

Dark matter (DM) in the Universe

Dark matter exists at various scales in the Universe. (galaxies, clusters, large scale structures, cosmological scale) However, its microscopic property remains unknown.

Zhao-Huan YU (IHEP)

Dark matter searches at high energy colliders

Dark matter	Collider detection	Monophoton signature	Mono-Z signature	Conclusions
0000000				
Dark matter				

Different kinds of DM detections

Dark matter ○○●○○○○○	Collider detection	Monophoton signature	Mono-Z signature	Conclusions
Direct detection				
DM dire	oct detectio	n		

Detect recoil signals of nuclei scattered by DM particles (photons, phonons, ionization)

Work underground to reduce cosmic ray backgrounds

LUX, arXiv:1310.8214 \Rightarrow

10

LUX

 10^{2}

m_{WIMP} (GeV/c²)

10¹

Dark matter ○○○○●○○○	Collider detection	Monophoton signature	Mono- <i>Z</i> signature	Conclusions
Indirect detection				

DM indirect detection

Search for products from DM annihilation or decay

Dark matter	Collider detection	Monophoton signature	Mono-Z signature	Conclusions
00000000				
Indirect detection				

Indirect detection experiments

PAMELA

Dark matter	Collider detection	Monophoton signature	Mono-Z signature	Conclusions
00000000	000000	0000000000	000000	00
Indirect detection				

Indirect detection results

 10^{3}

Dark matter ○○○○○○●	Collider detection	Monophoton signature	Mono - <i>Z</i> signature	Conclusions
Indirect detection				

Fermi γ -ray observations on 15 dwarf spheroidal satellite galaxies of the Milky Way has set strict constraints on DM annihilations.

Reach down to the canonical annihilation cross section of thermal produced dark matter ($\sim 3 \times 10^{-26} \text{ cm}^3 \text{ s}^{-1}$). [arXiv:1310.0828]

Dark matter	Collider detection	Monophoton signature	Mono-Z signature	Conclusions
Colliders	•••••			

Past and current hadron colliders

The Tevatron accelerator

Source: Fermilat

TEVATRON: $p\bar{p}$ collider (Fermilab, 1987-2011) Circumference: 6.28 km Collision energy: $\sqrt{s} = 1.96$ TeV Luminosity: $\sim 4.3 \times 10^{32}$ cm⁻² s⁻¹ Detectors: CDF, DØ

LHC: *pp* collider (also *p*Pb, PbPb) (CERN, 2009-) Circumference: 26.659 km Collision energy: $\sqrt{s} = 7, 8, 13, 14$ TeV Luminosity: $\sim 50 - 500 \times 10^{32}$ cm⁻² s⁻¹ Detectors: ATLAS, CMS, ALICE, LHCb

Dark matter	Collider detection ○●○○○○	Monophoton signature	Mono -Z signature	Conclusions
Colliders				
_				

Future e^+e^- colliders

ILC: International Linear Collider Collision energy: $\sqrt{s} = 250,350,500,1000 \text{ GeV}$ Luminosity: ~ 75 - 500 × 10³² cm⁻² s⁻¹ Detectors: SiD, ILD

CEPC: Circular Electron-Positron Collider (China) Collision energy: $\sqrt{s} \sim 250$ GeV

CLIC: Compact Linear Collider Collision energy: $\sqrt{s} \sim 1 - 3$ TeV

Dark matter	Collider detection	Monophoton signature	Mono-Z signature	Conclusions
	00000			

DM searching at colliders

Particle identification in collider detectors

How about DM particles? Missing energy $(\not\!\!\! E \text{ or } \not\!\!\! E_T)$ (similar to neutrinos)

Dark matter	Collider detection	Monophoton signature	Mono-Z signature	Conclusions
	000000			
DM searching at coll	lidore			

DM searching channels at colliders

Social DM

Maverick DM

DM particle is the only new particle reachable at the collision energy Mono-X + ∉ final states

(monojet, mono- γ , mono-W/Z, ...)

(Classified by Rocky Kolb)

Dark matter	Collider detection	Monophoton signature	Mono-Z signature	Conclusions
DM searching at c	olliders			
Results	from LHC			

[CMS PAS EXO-12-048]

Dark matter	Collider detection	Monophoton signature	Mono-Z signature	Conclusions	
	00000				
DM searching at colliders					

Expected sensitivity at the CEPC

Expected sensitivities $(3\sigma \text{ reaches})$ to interactions between DM and electrons in the monophoton + $\not E$ searching channel at the circular electron-positron collider (CEPC)

Zhao-Huan YU (IHEP)

Dark matter searches at high energy colliders

Dark matter	Collider detection	Monophoton signature ●0000000000	Mono - <i>Z</i> signature	Conclusions
γ -ray line spectrum				

γ -ray emission from DM: line spectrum

In general, DM particles (χ) should not have electric charge and not directly couple to photons \downarrow **DM particles may couple to photons via high order loop diagrams** (highly suppressed, the branching fraction may be only $\sim 10^{-4} - 10^{-1}$)

Dark matter	Collider detection	Monophoton signature ●0000000000	Mono-Z signature	Conclusions
γ -ray line spectrum				

γ -ray emission from DM: line spectrum

In general, DM particles (χ) should not have electric charge and not directly couple to photons \downarrow **DM particles may couple to photons via high order loop diagrams** (highly suppressed, the branching fraction may be only ~ $10^{-4} - 10^{-1}$)

Dark matter	Collider detection	Monophoton signature	Mono-Z signature	Conclusions
		000000000		
v-ray line spectrum				

A γ -ray line from the Galactic center region?

Using the 3.7-year Fermi-LAT γ -ray data, several analyses showed that there might be evidence of a monochromatic γ -ray line at energy $\sim 130 \,\text{GeV}$, originating from the Galactic center region (about $3 - 4\sigma$).

It may be due to DM annihilation with $\langle \sigma_{\rm ann} \nu \rangle \sim 10^{-27} \, {\rm cm}^3 \, {\rm s}^{-1}$.

Dark matter	Collider detection	Monophoton signature ○○●○○○○○○○	Mono-Z signature	Conclusions
γ -ray line spectrum				

Recently, the Fermi-LAT Collaboration has released its official spectral line search in the energy range $5 - 300 \,\text{GeV}$ using 3.7 years of data.

They **did not find any globally significant lines** and set 95% CL upper limits for DM annihilation cross sections.

Their most significant fit occurred at $E_{\gamma} = 133 \,\text{GeV}$ and had **a local** significance of 3.3σ , which translates to a global significance of 1.6σ .

Fermi-LAT Collaboration, 1305.5597

Dark matter	Collider detection	Monophoton signature ○○○●○○○○○○	Mono-Z signature	Conclusions
Collider sensitivity				

DM-photon interaction at e^+e^- colliders

The coupling between DM particles and photons that induce the annihilation process $\chi \chi \rightarrow \gamma \gamma$ can also lead to the process $e^+e^- \rightarrow \chi \chi \gamma$. Therefore, the possible γ -ray line signal observed by Fermi-LAT may be tested at future TeV-scale e^+e^- colliders.

DM particles escape from the detector

Signature: a monophoton associating with missing energy $(\gamma + \not E)$

Dark matter	Collider detection	Monophoton signature ○○○○●○○○○○	Mono -Z signature	Conclusions		
Collider sensitivity						
Effective operator approach						

If DM particles couple to photons via exchanging some mediators which are **sufficiently heavy**, the DM-photon coupling can be approximately described by **effective contact operators**.

For Dirac fermionic DM, consider $\mathcal{O}_F = \frac{1}{\Lambda^3} \bar{\chi} i \gamma_5 \chi F_{\mu\nu} \tilde{F}^{\mu\nu}$: $\langle \sigma_{\rm ann} v \rangle_{\chi \bar{\chi} \to 2\gamma} \simeq \frac{4m_{\chi}^4}{\pi \Lambda^6}, \qquad \sigma(e^+ e^- \to \chi \bar{\chi} \gamma) \sim \frac{s^2}{\Lambda^6}$ Fermi γ -ray line signal $\iff m_{\gamma} \simeq 130 \,\text{GeV}, \Lambda \sim 1 \,\text{TeV}$ For complex scalar DM, consider $\mathcal{O}_S = \frac{1}{\Lambda^2} \chi^* \chi F_{\mu\nu} F^{\mu\nu}$: $\langle \sigma_{\rm ann} v \rangle_{\chi \chi^* \to 2\gamma} \simeq \frac{2m_{\chi}^2}{\pi \Lambda^4}, \quad \sigma(e^+ e^- \to \chi \chi^* \gamma) \sim \frac{s}{\Lambda^4}$ Fermi γ -ray line signal $\iff m_{\gamma} \simeq 130 \,\text{GeV}, \Lambda \sim 3 \,\text{TeV}$

Dark matter	Collider detection	Monophoton signature ○○○○○●○○○○○	Mono- <i>Z</i> signature	Conclusions
Collider sensitivity				

In the $\gamma + \not\!\!\!E$ searching channel, the main background is $e^+e^- \rightarrow v\bar{v}\gamma$:

Minor backgrounds: $e^+e^- \rightarrow e^+e^-\gamma$, $e^+e^- \rightarrow \tau^+\tau^-\gamma$, ...

Simulation: FeynRules \rightarrow MadGraph 5 \rightarrow PGS 4

ILD-like ECAL energy resolution:
$$\frac{\Delta E}{E} = \frac{16.6\%}{\sqrt{E/\text{GeV}}} \oplus 1.1\%$$

Future e^+e^- colliders: $\sqrt{s} = 250 \text{ GeV}$ ("Higgs factory"), $\sqrt{s} = 500 \text{ GeV}$ (typical ILC), $\sqrt{s} = 1 \text{ TeV}$ (upgraded ILC & initial CLIC), $\sqrt{s} = 3 \text{ TeV}$ (ultimate CLIC)

Dark matter Collider detection Monophoton signature Mono-Z signature Conclusions 0000000 000000 000000 000000 0

Cut 1 (pre-selection): Require a photon with $E_{\gamma} > 10 \,\text{GeV}$ and $10^{\circ} < \theta_{\gamma} < 170^{\circ}$ Veto any other particle

Benchmark point: $\Lambda = 200 \text{ GeV}, m_{\gamma} = 100(50) \text{ GeV}$ for fermionic (scalar) DM

Dark matter Collider detection Monophoton signature Mono-Z signature Conclusions 0000000 000000 000000 000000 0

Cut 1 (pre-selection): Require a photon with $E_{\gamma} > 10 \,\text{GeV}$ and $10^{\circ} < \theta_{\gamma} < 170^{\circ}$ Veto any other particle

Cut 2: Veto $50 \text{ GeV} < m_{\text{miss}} < 130 \text{ GeV}$

Benchmark point: $\Lambda = 200 \text{ GeV}, m_{\gamma} = 100(50) \text{ GeV}$ for fermionic (scalar) DM

Dark matter	Collider detection	Monophoton signature	Mono-Z signature	Conclusions
		0000000000		
Collidor consitivity				

Cut 1 (pre-selection): Require a photon with $E_{\gamma} > 10 \text{ GeV}$ and $10^{\circ} < \theta_{\gamma} < 170^{\circ}$ Veto any other particle Cut 2: Veto $50 \text{ GeV} < m_{\text{miss}} < 130 \text{ GeV}$ Cut 3: Require $30^{\circ} < \theta_{\gamma} < 150^{\circ}$

Benchmark point: $\Lambda = 200 \text{ GeV}, m_{\chi} = 100(50) \text{ GeV}$ for fermionic (scalar) DM

Dark matter	Collider detection	Monophoton signature	Mono-Z signature	Conclusions	
		0000000000			
Collidor consitivity					

ollider sensitivity

Cut 1 (pre-selection): Require a photon with $E_{\gamma} > 10 \text{ GeV}$ and $10^{\circ} < \theta_{\gamma} < 170^{\circ}$ Veto any other particle **Cut 2:** Veto $50 \text{ GeV} < m_{\text{miss}} < 130 \text{ GeV}$ **Cut 3:** Require $30^{\circ} < \theta_{\gamma} < 150^{\circ}$ **Cut 4:** Require $p_{T}^{\gamma} > \sqrt{s}/10$

Benchmark point: $\Lambda = 200 \text{ GeV}, m_{\gamma} = 100 (50) \text{ GeV}$ for fermionic (scalar) DM

Dark matter	Collider detection	Monophoton signature	Mono-Z signature	Conclusions
Collider sensitivity				

Cross sections and signal significances after each cut

	$v \bar{v} \gamma$	$e^+e^-\gamma$	Fermio	nic DM	Scala	r DM
	σ (fb)	σ (fb)	σ (fb)	S/\sqrt{B}	σ (fb)	S/\sqrt{B}
Cut 1	2415.2	173.0	646.8	12.7	321.4	6.3
Cut 2	2102.5	168.6	646.8	13.6	308.2	6.5
Cut 3	1161.1	16.8	538.0	15.7	255.9	7.5
Cut 4	254.5	1.9	520.7	32.5	253.9	15.8

Benchmark point: $\Lambda = 200 \,\text{GeV}$, $m_{\gamma} = 100(50) \,\text{GeV}$ for fermionic (scalar) DM

Most of the signal events remain

 $e^+e^- \rightarrow v\bar{v}\gamma$ background: reduced by almost **an order of magnitude** $e^+e^- \rightarrow e^+e^-\gamma$ background: only **one percent** survives

$$(\sqrt{s} = 500 \,\text{GeV}, \, 1 \,\text{fb}^{-1})$$

[ZHY, Yin, Yan, arXiv:1307.5740]

Dark matter	Collider detection	Monophoton signature ○○○○○○○●○	Mono - <i>Z</i> signature	Conclusions
Beam polarization				

Beam polarization

For a process at an e^+e^- collider with **polarized beams**,

$$\sigma(P_{e^{-}}, P_{e^{+}}) = \frac{1}{4} \left[(1 + P_{e^{-}})(1 + P_{e^{+}})\sigma_{\mathrm{RR}} + (1 - P_{e^{-}})(1 - P_{e^{+}})\sigma_{\mathrm{LL}} + (1 + P_{e^{-}})(1 - P_{e^{+}})\sigma_{\mathrm{RL}} + (1 - P_{e^{-}})(1 + P_{e^{+}})\sigma_{\mathrm{LR}} \right]$$

▲ $(P_{e^-}, P_{e^+}) = (0.8, -0.3)$ can be achieved at the ILC [ILC technical design report, Vol. 1, 1306.6327]

 $\left(S/\sqrt{B}=3\right)$

Using the **polarized beams** is roughly equivalent to **increasing** the integrated luminosity by **an order of magnitude**.

For fermionic DM (scalar DM), a data set of 2000 fb^{-1} (1000 fb^{-1}) would be just sufficient to test the Fermi γ -ray line signal at an e^+e^- collider with $\sqrt{s} = 1 \text{ TeV}$ (3 TeV).

[ZHY, Yin, Yan, arXiv:1307.5740]

Dark matter	Collider detection	Monophoton signature	Mono-Z signature ●○○○○○	Conclusions
Mono-Z signature				

Mono-Z signature: DM couplings to $ZZ/Z\gamma$

The mono-Z channel at high energy e^+e^- collider can be sensitive to **the DM coupling to** $ZZ/Z\gamma$.

We consider the following couplings:

$$\mathcal{O}_{F1} = \frac{1}{\Lambda_1^3} \bar{\chi} \chi B_{\mu\nu} B^{\mu\nu} + \frac{1}{\Lambda_2^3} \bar{\chi} \chi W^a_{\mu\nu} W^{a\mu\nu}$$

$$\supset \bar{\chi} \chi (G_{ZZ} Z_{\mu\nu} Z^{\mu\nu} + G_{AZ} A_{\mu\nu} Z^{\mu\nu})$$

$$\mathcal{O}_{F2} = \frac{1}{\Lambda_1^3} \bar{\chi} i \gamma_5 \chi B_{\mu\nu} \tilde{B}^{\mu\nu} + \frac{1}{\Lambda_2^3} \bar{\chi} i \gamma_5 \chi W^a_{\mu\nu} \tilde{W}^{a\mu\nu}$$

$$\supset \bar{\chi} i \gamma_5 \chi (G_{ZZ} Z_{\mu\nu} \tilde{Z}^{\mu\nu} + G_{AZ} A_{\mu\nu} \tilde{Z}^{\mu\nu})$$

$$\mathcal{O}_{FH} = \frac{1}{\Lambda^3} \bar{\chi} \chi (D_\mu H)^\dagger D_\mu H$$

$$\rightarrow \frac{m_Z^2}{2\Lambda^3} \bar{\chi} \chi Z_\mu Z^\mu$$

$$\begin{split} G_{\rm ZZ} &\equiv \frac{\sin^2 \theta_W}{\Lambda_1^3} + \frac{\cos^2 \theta_W}{\Lambda_2^3} \\ G_{\rm AZ} &\equiv 2 \sin \theta_W \cos \theta_W \left(\frac{1}{\Lambda_2^3} - \frac{1}{\Lambda_1^3} \right) \end{split}$$

Dark matter	Collider detection	Monophoton signature	Mono-Z signature	Conclusions
0000000	000000	0000000000	00000	00
Mono-Z signature				

Mono-*Z* signature: **DM** couplings to electrons

This channel can also be sensitive to the DM coupling to electrons.

We consider the following couplings:

$$\mathcal{O}_{\rm FP} = \frac{1}{\Lambda^2} \bar{\chi} \gamma_5 \chi \bar{e} \gamma_5 e, \quad \mathcal{O}_{\rm FA} = \frac{1}{\Lambda^2} \bar{\chi} \gamma^\mu \gamma_5 \chi \bar{e} \gamma_\mu \gamma_5 e$$

Dark matter	Collider detection	Monophoton signature	Mono-Z signature	Conclusions
			0000	
Event distributions				

SM backgrounds: $e^+e^- \rightarrow \ell^+\ell^- \bar{\nu}\nu$, $e^+e^- \rightarrow \tau^+\tau^-$, $e^+e^- \rightarrow \tau^+\tau^- \bar{\nu}\nu$

Dark matter	Collider detection	Monophoton signature	Mono-Z signature	Conclusions
			00000	
Event distributions				

SM backgrounds: $e^+e^- \rightarrow \ell^+\ell^- \bar{\nu}\nu$, $e^+e^- \rightarrow \tau^+\tau^-$, $e^+e^- \rightarrow \tau^+\tau^- \bar{\nu}\nu$

Reconstructing the *Z* **boson**: require only 2 leptons (*e*'s or μ 's) with $p_T > 10$ GeV and $|\eta| < 3$, and that they are opposite-sign same-flavor;

Zhao-Huan YU (IHEP)

Dark matter	Collider detection	Monophoton signature	Mono-Z signature	Conclusions
			00000	
Event distributions				

SM backgrounds: $e^+e^- \rightarrow \ell^+\ell^- \bar{\nu}\nu$, $e^+e^- \rightarrow \tau^+\tau^-$, $e^+e^- \rightarrow \tau^+\tau^- \bar{\nu}\nu$

Reconstructing the *Z* **boson**: require only 2 leptons (*e*'s or μ 's) with $p_{\rm T} > 10$ GeV and $|\eta| < 3$, and that they are opposite-sign same-flavor; require their invariant mass satisfying $|m_{\ell\ell} - m_Z| < 5$ GeV.

Zhao-Huan YU (IHEP)

Dark matter	Collider detection	Monophoton signature	Mono-Z signature ○○●○○○	Conclusions
Event distributions				

SM backgrounds: $e^+e^- \rightarrow \ell^+\ell^- \bar{\nu}\nu$, $e^+e^- \rightarrow \tau^+\tau^-$, $e^+e^- \rightarrow \tau^+\tau^- \bar{\nu}\nu$

Reconstructing the *Z* **boson**: require only 2 leptons (*e*'s or μ 's) with $p_{\rm T} > 10$ GeV and $|\eta| < 3$, and that they are opposite-sign same-flavor; require their invariant mass satisfying $|m_{\ell\ell} - m_Z| < 5$ GeV.

Reconstructing the recoil mass: $m_{\text{recoil}} = \sqrt{(p_{e^+} + p_{e^-} - p_{\ell_1} - p_{\ell_2})^2};$

Zhao-Huan YU (IHEP)

Dark matter searches at high energy colliders

Dark matter	Collider detection	Monophoton signature	Mono-Z signature ○○●○○○	Conclusions
Event distributions				

SM backgrounds: $e^+e^- \rightarrow \ell^+\ell^- \bar{\nu}\nu$, $e^+e^- \rightarrow \tau^+\tau^-$, $e^+e^- \rightarrow \tau^+\tau^- \bar{\nu}\nu$

Reconstructing the *Z* **boson**: require only 2 leptons (*e*'s or μ 's) with $p_{\rm T} > 10$ GeV and $|\eta| < 3$, and that they are opposite-sign same-flavor; require their invariant mass satisfying $|m_{\ell\ell} - m_Z| < 5$ GeV.

Reconstructing the recoil mass: $m_{\text{recoil}} = \sqrt{(p_{e^+} + p_{e^-} - p_{\ell_1} - p_{\ell_2})^2}$; veto the events with $m_{\text{recoil}} < 140$ GeV.

Zhao-Huan YU (IHEP)

Dark matter searches at high energy colliders

Dark matter	Collider detection	Monophoton signature	Mono-Z signature ○○○●○○	Conclusions
Event distributions				

Hadron channel: $Z \rightarrow jj$

SM backgrounds: $e^+e^- \rightarrow jj\bar{v}v$, $e^+e^- \rightarrow jj\ell v$, $e^+e^- \rightarrow t\bar{t}$

Dark matter	Collider detection	Monophoton signature	Mono-Z signature ○○○●○○	Conclusions		
Event distributions						
Hadron channel: $Z \rightarrow ii$						

SM backgrounds:
$$e^+e^- \rightarrow jj\bar{v}v$$
, $e^+e^- \rightarrow jj\ell v$, $e^+e^- \rightarrow t\bar{t}$

Reconstructing the *Z* **boson**: require only 2 jets with $p_{\rm T} > 10$ GeV and $|\eta| < 3$;

Dark matter	Collider detection	Monophoton signature	Mono-Z signature ○○○●○○	Conclusions	
Event distributions					
Hadron channel: $Z \rightarrow jj$					

SM backgrounds:
$$e^+e^- \rightarrow jj\bar{v}v$$
, $e^+e^- \rightarrow jj\ell v$, $e^+e^- \rightarrow t\bar{t}$

Reconstructing the *Z* **boson**: require only 2 jets with $p_T > 10$ GeV and $|\eta| < 3$; require their invariant mass satisfying 40 GeV $< m_{jj} < 95$ GeV.

Dark matter	Collider detection	Monophoton signature	Mono - <i>Z</i> signature ○○○●○○	Conclusions
Event distributions				
Hadron a	hannalı 7			

Hadron channel: $Z \rightarrow jj$

SM backgrounds:
$$e^+e^- \rightarrow jj\bar{v}v$$
, $e^+e^- \rightarrow jj\ell v$, $e^+e^- \rightarrow t\bar{t}$

Reconstructing the *Z* **boson**: require only 2 jets with $p_T > 10$ GeV and $|\eta| < 3$; require their invariant mass satisfying 40 GeV $< m_{jj} < 95$ GeV.

Reconstructing the recoil mass: $m_{\text{recoil}} = \sqrt{(p_{e^+} + p_{e^-} - p_{j_1} - p_{j_2})^2}$;

Dark matter	Collider detection	Monophoton signature	Mono-Z signature ○○○●○○	Conclusions
Event distributions				
	bennel 7			

Hadron channel: $Z \rightarrow jj$

SM backgrounds:
$$e^+e^- \rightarrow jj\bar{v}v$$
, $e^+e^- \rightarrow jj\ell v$, $e^+e^- \rightarrow t\bar{t}$

Reconstructing the *Z* **boson**: require only 2 jets with $p_T > 10$ GeV and $|\eta| < 3$; require their invariant mass satisfying 40 GeV $< m_{ij} < 95$ GeV.

Reconstructing the recoil mass: $m_{\text{recoil}} = \sqrt{(p_{e^+} + p_{e^-} - p_{j_1} - p_{j_2})^2}$; veto the events with $m_{\text{recoil}} < 200$ GeV.

3σ sensitivity: DM couplings to $ZZ/Z\gamma$

(with an integrated luminosity of 1000 fb⁻¹, assuming $\Lambda = \Lambda_1 = \Lambda_2$ for \mathcal{O}_{F1} and \mathcal{O}_{F2})

3σ sensitivity: DM couplings to electrons

(with an integrated luminosity of 1000 fb^{-1})

Zhao-Huan YU (IHEP)

Dark matter searches at high energy colliders

Dark matter	Collider detection	Monophoton signature	Mono - <i>Z</i> signature	Conclusions ●○			
Conclusions and discussions							

- As a frontier of cosmology, astrophysics, and particle physics, the research of **dark matter** connects our knowledge of the Universe from the largest to the smallest scales.
- In addition to DM direct and indirect detection, collider detection provides an independent and complementary way to explore the microscopic nature of DM particles.
- If there are other new particles accompanied with DM particles, collider detection is needed to acquire the most detailed information about the new physics containing DM particles.

Dark matter	Collider detection	Monophoton signature	Mono-Z signature	Conclusions ○●

Thanks for your attentions!