Current and Future Collider Searches for Electroweak Dark Matter Models

Zhao-Huan Yu (余钊焕)
School of Physics, Sun Yat-Sen University

Based on Tait, ZHY, arXiv:1601.01354, JHEP
CF Cai, ZHY, HH Zhang, arXiv:1611.02186, NPB
CF Cai, ZHY, HH Zhang, arXiv:1705.07921, NPB
QF Xiang, XJ Bi, PF Yin, ZHY, arXiv:1707.03094, PRD
JW Wang, XJ Bi, QF Xiang, PF Yin, ZHY, arXiv:1711.05622, PRD

Workshop on High Energy Physics Frontiers
Sun Yat-Sen University, Guangzhou
January 22, 2019
An attractive class of dark matter (DM) candidates is weakly interacting massive particles (WIMPs), as they can explain the observed DM relic abundance via thermal production mechanism.

It is natural to construct WIMP models by extending the Standard Model (SM) with a dark sector consisting of electroweak (EW) SU(2)$_L$ multiplets, whose neutral components could provide a viable DM candidate.
Direct Detection of Dark Matter

For a **Majorana DM candidate** χ, the couplings to the Higgs and Z bosons

$$\mathcal{L} \supset \frac{1}{2} g_{h\chi\chi} h\bar{\chi}\chi + \frac{1}{2} g_{Z\chi\chi} Z_{\mu} \bar{\chi} \gamma^\mu \gamma_5 \chi$$

would induce **spin-independent (SI)** and **spin-dependent (SD)** DM-nucleus scatterings.

For scalar multiplets, interactions with the Higgs doublet could split the real and imaginary parts of neutral components, leading to a **CP-even or CP-odd real scalar DM candidate**. Its coupling to the Higgs boson would induce **SI scatterings**.

Stringent constraints from current direct detection experiments

- **SI**: PandaX-II, XENON1T, LUX
- **SD**: PICO (proton), PandaX-II (neutron)
Fermionic Models

1. **SDFDM: Singlet + 2 Doublets** [Mahbubani, Senatore, hep-ph/0510064, PRD; D’Eramo, 0705.4493, PRD; Cohen et al., 1109.2604, PRD]

 \[S \in (1, 0), \quad D_1 = \begin{pmatrix} D_1^0 \\ D_1^- \end{pmatrix} \in (2, -1/2), \quad D_2 = \begin{pmatrix} D_2^+ \\ D_2^0 \end{pmatrix} \in (2, +1/2) \]

 \[\mathcal{L} \supset -\frac{1}{2} m_S S S - m_D \epsilon_{ij} D_1^i D_2^j + y_1 H_i S D_1^i - y_2 H_i^+ S D_2^i + \text{h.c.} \]

2. **DTFDM: 2 Doublets + Triplet** [Dedes, Karamitros, 1403.7744, PRD]

 \[D_1 = \begin{pmatrix} D_1^0 \\ D_1^- \end{pmatrix} \in (2, -1/2), \quad D_2 = \begin{pmatrix} D_2^+ \\ D_2^0 \end{pmatrix} \in (2, +1/2), \quad T = \begin{pmatrix} T^+ \\ T^0 \\ T^- \end{pmatrix} \in (3, 0) \]

 \[\mathcal{L} \supset m_D \epsilon_{ij} D_1^i D_2^j - \frac{1}{2} m_T T^a T^a + y_1 H_i T^a (\sigma^a)^j_i D_1^j - y_2 H_i^+ T^a (\sigma^a)^j_i D_2^j + \text{h.c.} \]

3. **TQFDM: Triplet + 2 Quadruplets** [Tait, ZHY, 1601.01354, JHEP]

 \[T = \begin{pmatrix} T^+ \\ T^0 \\ T^- \end{pmatrix} \in (3, 0), \quad Q_1 = \begin{pmatrix} Q_1^+ \\ Q_1^0 \\ Q_1^- \end{pmatrix} \in (4, -1/2), \quad Q_2 = \begin{pmatrix} Q_2^{++} \\ Q_2^+ \\ Q_2^0 \\ Q_2^- \end{pmatrix} \in (4, +1/2) \]

 \[\mathcal{L} \supset -\frac{1}{2} m_T T T - m_Q Q_1 Q_2 + y_1 \epsilon_{jk} (Q_1)_i^{jk} T_k^i H^l - y_2 (Q_2)_i^{jk} T_k^i H_j^+ + \text{h.c.} \]

Impact on vacuum stability will be discussed in Prof. Xiao-Jun Bi’s talk on Jan 25
Mass Eigenstates

Take the TQFDM model as an example [Tait, ZHY, 1601.01354, JHEP]

\[
\mathcal{L}_{\text{mass}} = -\frac{1}{2} (T^0, Q^0_1, Q^0_2) \mathcal{M}_N \begin{pmatrix} T^0 \\ Q^0_1 \\ Q^0_2 \end{pmatrix} - (T^-, Q^-_1, Q^-_2) \mathcal{M}_C \begin{pmatrix} T^- \\ Q^+_1 \\ Q^+_2 \end{pmatrix} - m_Q Q^- Q'^+= \text{h.c.}
\]

\[
\mathcal{M}_N = \begin{pmatrix} m_T & \frac{1}{\sqrt{3}} y_1 v & -\frac{1}{\sqrt{3}} y_2 v \\ \frac{1}{\sqrt{3}} y_1 v & 0 & m_Q \\ -\frac{1}{\sqrt{3}} y_2 v & m_Q & 0 \end{pmatrix}, \quad \mathcal{M}_C = \begin{pmatrix} m_T & \frac{1}{\sqrt{2}} y_1 v & -\frac{1}{\sqrt{6}} y_2 v \\ -\frac{1}{\sqrt{6}} y_1 v & 0 & -m_Q \\ \frac{1}{\sqrt{2}} y_2 v & -m_Q & 0 \end{pmatrix}
\]

\[
\begin{pmatrix} T^0 \\ Q^0_1 \\ Q^0_2 \end{pmatrix} = \mathcal{N} \begin{pmatrix} \chi^0_1 \\ \chi^0_2 \\ \chi^0_3 \end{pmatrix}, \quad \begin{pmatrix} T^+ \\ Q^+_1 \\ Q^+_2 \end{pmatrix} = \mathcal{C}_L \begin{pmatrix} \chi^+_1 \\ \chi^+_2 \\ \chi^+_3 \end{pmatrix}, \quad \begin{pmatrix} T^- \\ Q^-_1 \\ Q^-_2 \end{pmatrix} = \mathcal{C}_R \begin{pmatrix} \chi^-_1 \\ \chi^-_2 \\ \chi^-_3 \end{pmatrix}, \quad \chi^- \equiv Q^-_1, \quad \chi'^+ \equiv Q'^+_2
\]

3 Majorana fermions \(\chi^0_i\), 3 singly charged fermions \(\chi^\pm_i\), 1 doubly charged fermion \(\chi^{\pm\pm}\)

\(\chi^0_1\) would be an excellent DM candidate if it is the lightest among them
Constraints on the TQFDM model

For $y_1 = y_2 = 0.5$:

- m_T vs m_Q: Overproduction
- $\Omega h^2 = 0.1186$
- $m_{\chi^0_1} = 1$ TeV
- LUX
- Fermi

For $y_1 = 0.5$, $y_2 = 1.0$:

- m_T vs m_Q: Overproduction
- $\Omega h^2 = 0.1186$
- $m_{\chi^0_1} = 1$ TeV
- LUX
- Fermi

For $y_1 = 0.5$, $y_2 = -0.5$:

- m_T vs m_Q: Overproduction
- $\Omega h^2 = 0.1186$
- $m_{\chi^0_1} = 1$ TeV
- LUX
- Fermi

For $y_1 = 0.5$, $y_2 = -1.0$:

- m_T vs m_Q: Overproduction
- $\Omega h^2 = 0.1186$
- $m_{\chi^0_1} = 1$ TeV
- LUX
- Fermi

References:
[Tait, ZHY, 1601.01354, JHEP]
Monojet + \not{E}_T Channel at pp Colliders (TQFDM)

- **Pair production of dark sector fermions:**

 $$pp \rightarrow \chi \chi +\text{jets}, \quad \chi = \chi_i^0, \chi_i^\pm, \chi^{\pm\pm}$$

 Associated with ≥ 1 hard jet from initial state radiation \Rightarrow **monojet + \not{E}_T** final state

- **Main SM backgrounds:**

 $$Z(\rightarrow \nu \bar{\nu}) +\text{jets}, \quad W(\rightarrow \ell \nu) +\text{jets}$$

- **Current constraints:** ATLAS searches at the 13 TeV **LHC** with 36.1 fb$^{-1}$ data [ATLAS-CONF-2017-060] excluded parameter regions up to $m_{\chi_1^0} \sim 70 - 200$ GeV

- **Future prospect:** **SPPC** at 100 TeV collecting with 3 ab$^{-1}$ data would be able to explore up to $m_{\chi_1^0} \sim 1 - 2$ TeV

[JW Wang, XJ Bi, QF Xiang, PF Yin, ZHY, 1711.05622, PRD]
Multilepton + \not{E}_T Channel at pp Colliders (TQFDM)

Signals in the 2$\ell + \not{E}_T$ channel:
\[\chi_i^+ \chi_j^- \rightarrow W^+ (\rightarrow \ell^+ \nu) \ W^- (\rightarrow \ell^- \bar{\nu}) \ \chi_1^0 \chi_1^0 \]

Signals in the 2$\ell + \text{jets} + \not{E}_T$ channel:
\[\chi_i^0 \chi_j^\pm \rightarrow Z (\rightarrow \ell^+ \ell^-) \ W^\pm (\rightarrow j j) \ \chi_1^0 \chi_1^0 \]

Signals in the 3$\ell + \not{E}_T$ channel:
\[\chi_i^0 \chi_j^\pm \rightarrow Z (\rightarrow \ell^+ \ell^-) \ W^\pm (\rightarrow \ell' \nu) \ \chi_1^0 \chi_1^0 \]

Main SM backgrounds:
$ZZ + \text{jets}, \ WW + \text{jets}, \ WZ + \text{jets}, \ tt + \text{jets}$

Current constraints: ATLAS searches at the 13 TeV LHC with 36.1 fb$^{-1}$ data [ATLAS-CONF-2017-039]

Future prospect: SPPC experiments at $\sqrt{s} = 100$ TeV with 3 ab$^{-1}$ data

[JW Wang, XJ Bi, QF Xiang, PF Yin, ZHY, 1711.05622, PRD]
Correction to $e^+e^- \to Zh$ (DTFDM)

![Diagrams showing interactions between fermions and dark sectors](diagrams)

EURECOM

$e^+e^- \to Zh$ cross section could be modified by dark sector fermions via loop effects

CEPC experiments with 5 ab$^{-1}$ data can measure the relative deviation from SM down to $\Delta \sigma/\sigma_0 \approx 0.51\%$ [CEPC-SPPC pre-CDR, Vol. II]

[QF Xiang, XJ Bi, PF Yin, ZHY, 1707.03094, PRD]
The **LEP** bound on the *Z invisible width* is

$$\Gamma_{Z,\text{inv}}^{\text{BSM}} < 2 \text{ MeV} \text{ at 95\% CL}$$

For **CEPC** experiments collecting 5 ab$^{-1}$ data, the 95\% CL expected constraint on the *h invisible width* would be $\Gamma_{h,\text{inv}} < 11.4 \text{ keV}$, while the relative precision of the $h \rightarrow \gamma \gamma$ decay width could be measured to 9.4\% [CEPC-SPPC pre-CDR, Vol. II]

$$y_1 = 0.5, \quad y_2 = 1.5$$

[QF Xiang, XJ Bi, PF Yin, ZHY, 1707.03094, PRD]
Two classes of EW radiative corrections

- **Direct Corrections**: vertex, box, and bremsstrahlung corrections

- **Oblique Corrections**: gauge boson propagator corrections

Oblique corrections can be treated in a self-consistent, model-independent way through an effective lagrangian to incorporate a large class of Feynman diagrams into a few **running couplings** [Kennedy & Lynn, NPB 322, 1 (1989)]
EW oblique parameters S, T, and U are introduced to describe new physics corrections to gauge boson propagators [Peskin, Takeuchi, PRL, '90; PRD '92]

\[
S = 16\pi [\Pi'_{33}(0) - \Pi'_{3Q}(0)]
\]

\[
T = \frac{4\pi}{s_W^2 c_W^2 m_Z^2} [\Pi_{11}(0) - \Pi_{33}(0)], \quad U = 16\pi [\Pi'_{11}(0) - \Pi'_{33}(0)]
\]

Here $\Pi'_{IJ}(0) \equiv \partial \Pi_{IJ}(p^2)/\partial p^2|_{p^2=0}$, $s_W \equiv \sin \theta_W$, $c_W \equiv \cos \theta_W$

$\gamma \sim \gamma = ie^2 \Pi_{QQ}(p^2)g^{\mu\nu} + (p^\mu p^\nu$ terms)$

$Z \sim Z = \frac{ie^2}{s_W c_W} [\Pi_{3Q}(p^2) - s_W^2 \Pi_{QQ}(p^2)]g^{\mu\nu} + (p^\mu p^\nu$ terms)$

$Z \sim Z = \frac{ie^2}{s_W^2 c_W^2} [\Pi_{33}(p^2) - 2s_W^2 \Pi_{3Q}(p^2) + s_W^4 \Pi_{QQ}(p^2)]g^{\mu\nu} + (p^\mu p^\nu$ terms)$

$W \sim W = \frac{ie^2}{s_W^2} \Pi_{11}(p^2)g^{\mu\nu} + (p^\mu p^\nu$ terms)$
For evaluating CEPC precision of oblique parameters, we use a simplified set of EW precision observables in the global fit:

\[\alpha_s(m_Z^2), \Delta \alpha^{(5)}_{\text{had}}(m_Z^2), m_Z, m_t, m_h, m_W, \sin^2 \theta_{\text{eff}}^\ell, \Gamma_Z \]

Free parameters: the former 5 observables, \(S, T, \) and \(U \)

The remaining 3 observables are determined by the free parameters:

\[
m_W = m_W^{\text{SM}} \left[1 - \frac{\alpha}{4(c_W^2 - s_W^2)}(S - 1.55T - 1.24U) \right]
\]

\[
\sin^2 \theta_{\text{eff}}^\ell = (\sin^2 \theta_{\text{eff}}^\ell)^{\text{SM}} + \frac{\alpha}{4(c_W^2 - s_W^2)}(S - 0.69T)
\]

\[
\Gamma_Z = \Gamma_Z^{\text{SM}} - \frac{\alpha^2 m_Z}{72s_W^2 c_W(c_W^2 - s_W^2)}(12.2S - 32.9T)
\]

The calculation of **SM predictions** is based on 2-loop radiative corrections.
CEPC Precision of Electroweak Observables

<table>
<thead>
<tr>
<th></th>
<th>Current data</th>
<th>CEPC-B precision</th>
<th>CEPC-I precision</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\alpha_s(m_Z^2)$</td>
<td>0.1185 ± 0.0006</td>
<td>$\pm 1 \times 10^{-4}$</td>
<td></td>
</tr>
<tr>
<td>$\Delta \alpha^{(5)}_{\text{had}}(m_Z^2)$</td>
<td>0.02765 ± 0.00008</td>
<td>$\pm 4.7 \times 10^{-5}$</td>
<td></td>
</tr>
<tr>
<td>m_Z [GeV]</td>
<td>91.1875 ± 0.0021</td>
<td>$\pm 5 \times 10^{-4}$</td>
<td>$\pm 1 \times 10^{-4}$</td>
</tr>
<tr>
<td>m_t [GeV]</td>
<td>$173.34 \pm 0.76_{\text{ex}} \pm 0.5_{\text{th}}$</td>
<td>$\pm 0.2_{\text{ex}} \pm 0.5_{\text{th}}$</td>
<td>$\pm 0.03_{\text{ex}} \pm 0.1_{\text{th}}$</td>
</tr>
<tr>
<td>m_h [GeV]</td>
<td>125.09 ± 0.24</td>
<td>$\pm 5.9 \times 10^{-3}$</td>
<td></td>
</tr>
<tr>
<td>m_W [GeV]</td>
<td>$80.385 \pm 0.015_{\text{ex}} \pm 0.004_{\text{th}}$</td>
<td>$(\pm 3_{\text{ex}} \pm 1_{\text{th}}) \times 10^{-3}$</td>
<td></td>
</tr>
<tr>
<td>$\sin^2 \theta^\ell_{\text{eff}}$</td>
<td>0.23153 ± 0.00016</td>
<td>$(\pm 2.3_{\text{ex}} \pm 1.5_{\text{th}}) \times 10^{-5}$</td>
<td></td>
</tr>
<tr>
<td>Γ_Z [GeV]</td>
<td>2.4952 ± 0.0023</td>
<td>$(\pm 5_{\text{ex}} \pm 0.8_{\text{th}}) \times 10^{-4}$</td>
<td>$(\pm 1_{\text{ex}} \pm 0.8_{\text{th}}) \times 10^{-4}$</td>
</tr>
</tbody>
</table>

For **CEPC baseline (CEPC-B) precisions**, experimental uncertainties will be mostly reduced by CEPC measurements; theoretical uncertainties of m_W, $\sin^2 \theta^\ell_{\text{eff}}$, and Γ_Z can be reduced by fully calculating 3-loop corrections in the future.

CEPC improved (CEPC-I) precisions need:
- A high-precision beam energy calibration for improving m_Z and Γ_Z measurements
- A $t\bar{t}$ threshold scan for the m_t measurement at other e^+e^- colliders, like ILC
Global Fit

Modified χ^2 function [JJ Fan, Reece, LT Wang, 1411.1054, JHEP]:

$$\sum_i \left(\frac{O_{i \text{meas}} - O_{i \text{pred}}}{\sigma_i} \right)^2 + \sum_j \left\{ -2 \ln \left[\text{erf} \left(\frac{O_{j \text{meas}} - O_{j \text{pred}}}{\sqrt{2}\sigma_j} + \delta_j \right) - \text{erf} \left(\frac{O_{j \text{meas}} - O_{j \text{pred}} - \delta_j}{\sqrt{2}\sigma_j} \right) \right] \right\}$$

The **experimental uncertainty** σ_j and the **theoretical uncertainty** δ_j of an observable O_j are treated as **Gaussian** and **flat** errors.

<table>
<thead>
<tr>
<th></th>
<th>Current</th>
<th>CEPC-B</th>
<th>CEPC-I</th>
</tr>
</thead>
<tbody>
<tr>
<td>σ_S</td>
<td>0.10</td>
<td>0.021</td>
<td>0.011</td>
</tr>
<tr>
<td>σ_T</td>
<td>0.12</td>
<td>0.026</td>
<td>0.0071</td>
</tr>
<tr>
<td>σ_U</td>
<td>0.094</td>
<td>0.020</td>
<td>0.010</td>
</tr>
<tr>
<td>ρ_{ST}</td>
<td>+0.89</td>
<td>+0.90</td>
<td>+0.74</td>
</tr>
<tr>
<td>ρ_{SU}</td>
<td>−0.55</td>
<td>−0.68</td>
<td>+0.15</td>
</tr>
<tr>
<td>ρ_{TU}</td>
<td>−0.80</td>
<td>−0.84</td>
<td>−0.21</td>
</tr>
</tbody>
</table>

[CF Cai, ZHY, HH Zhang, 1611.02186, NPB]
Fit Results for Some Parameters Fixed to 0

95% CL contours for $U = 0$

$T = U = 0$ fixed

$S = U = 0$ fixed

<table>
<thead>
<tr>
<th></th>
<th>Current</th>
<th>CEPC-B</th>
<th>CEPC-I</th>
</tr>
</thead>
<tbody>
<tr>
<td>σ_S</td>
<td>0.037</td>
<td>0.0085</td>
<td>0.0068</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Current</th>
<th>CEPC-B</th>
<th>CEPC-I</th>
</tr>
</thead>
<tbody>
<tr>
<td>σ_T</td>
<td>0.032</td>
<td>0.0079</td>
<td>0.0042</td>
</tr>
</tbody>
</table>

[CF Cai, ZHY, HH Zhang, 1611.02186, NPB]
CEPC Sensitivity to Fermionic Models

- **Dotted lines:** expected 95% CL constraints from current, CEPC-B, and CEPC-I precisions of EW oblique parameters assuming $T = U = 0$

- **DD-SI:** excluded by spin-independent direct detection experiments at 90% CL

- **Dashed lines:** DM particle mass

[CF Cai, ZHY, HH Zhang, 1611.02186, NPB]
Singlet-Doublet Scalar Dark Matter (SDSDM)

A real singlet scalar $S \in (1, 0)$ and a complex doublet scalar $\Phi \in (2, 1/2)$:

$$\mathcal{L} \supset \frac{1}{2} (\partial_\mu S)^2 - \frac{1}{2} m_S^2 S^2 + (D_\mu \Phi)^\dagger D^\mu \Phi - m_D^2 |\Phi|^2 - (\kappa S \Phi^\dagger H + \text{h.c.}) - \frac{1}{2} \lambda_{Sh} S^2 |H|^2 - \lambda_1 |H|^2 |\Phi|^2 - [\lambda_2 (\Phi^\dagger H)^2 + \text{h.c.}] - \lambda_3 |\Phi^\dagger H|^2$$

The DM candidate can be either a CP-even or CP-odd scalar.

Dot-dashed lines: free S, T, and U

Solid lines: assuming $U = 0$

[CF Cai, ZHY, HH Zhang, 1705.07921, NPB]
In the limit $\kappa = 0$ and $m_S \rightarrow \infty$, the singlet decouples the SDSDM model reduces to the **inert Higgs doublet model** [Deshpande, Ma, PRD 18, 2574 (1978)]

- $\lambda_2 < 0$: **CP-even** DM candidate, coupling to the Higgs $\propto \lambda_1 + 2\lambda_2 + \lambda_3$
- $\lambda_2 > 0$: **CP-odd** DM candidate, coupling to the Higgs $\propto \lambda_1 - 2\lambda_2 + \lambda_3$

Dot-dashed lines: free S, T, and U

Solid lines: assuming $U = 0$

[CF Cai, ZHY, HH Zhang, 1705.07921, NPB]
Singlet-Triplet Scalar Dark Matter (STSDM)

A real singlet scalar \(S \in (1,0) \) and a complex triplet scalar \(\Delta \in (3,0) \):

\[
\mathcal{L} \supset \frac{1}{2} m_S^2 S^2 + m_\Delta^2 |\Delta|^2 + \frac{1}{2} \lambda_{Sh} S^2 |H|^2 + \lambda_0 |H|^2 |\Delta|^2 + \lambda_1 H_i^\dagger \Delta^j (\Delta^\dagger)_k^i H^k \\
+ \lambda_2 H_i^\dagger (\Delta^\dagger)_j^i \Delta^j_k H^k - (\lambda_3 H_i^\dagger \Delta^j \Delta^j_k H^k + \lambda_3' |H|^2 \Delta^i_j \Delta^i_j + \lambda_4 S H_i^\dagger \Delta^j_i H^j + \text{h.c.})
\]

Define \(\lambda_\pm \equiv \lambda_1 \pm \lambda_2 \), and \(\lambda_3' \) and \(\lambda_0 \) can be absorbed into \(\lambda_3 \) and \(\lambda_+ \)

Dot-dashed lines: assuming \(S = 0 \)
Solid lines: assuming \(S = U = 0 \)

[CF Cai, ZHY, HH Zhang, 1705.07921, NPB]
A complex quadruplet scalar $X \in (4, 1/2)$:

$$-\mathcal{L} \supset m_X^2 |X|^2 + \lambda_0 |H|^2 |X|^2 + \lambda_1 H_i^+ X_k^i (X^\dagger)^k_j H^j_k + \lambda_2 H_i^+ (X^\dagger)_j^k X^i_l H^l + \lambda_3 H_i^+ H_j^+ X^k_l X^i_j + \text{h.c.}$$

Define $\lambda_\pm \equiv \lambda_1 \pm \lambda_2$, and λ_0 can be absorbed into λ_+

Dot-dashed lines: free S, T, and U

Solid lines: assuming $U = 0$

[CF Cai, ZHY, HH Zhang, 1705.07921, NPB]
Conclusions

1. WIMP models can be naturally constructed by extending the Standard Model with a dark sector consisting of **electroweak multiplets**, whose electrically neutral components provide a DM candidate.

2. Such models typically introduce several **new electroweak particles** that could lead to remarkable signatures at \(pp \) and \(e^+e^- \) colliders.

3. We have studied the corresponding **direct production signals** at the LHC and at the future **SPPC**, as well as the indirect searches via **Higgs and electroweak precision measurements** at the future **CEPC**.
WIMP models can be naturally constructed by extending the Standard Model with a dark sector consisting of **electroweak multiplets**, whose electrically neutral components provide a DM candidate.

Such models typically introduce several **new electroweak particles** that could lead to remarkable signatures at pp and e^+e^- colliders.

We have studied the corresponding **direct production signals** at the LHC and at the future SPPC, as well as the indirect searches via Higgs and **electroweak precision measurements** at the future CEPC.

Thanks for your attention!
WIMP Models

WIMPs are typically introduced in the extensions of the Standard Model (SM) aiming at solving the **gauge hierarchy problem**

- **Supersymmetry (SUSY):** the lightest neutralino ($\tilde{\chi}_1^0$)
- **Universal extra dimensions:** the lightest KK particle ($B^{(1)}$, $W^{3(1)}$, or $\nu^{(1)}$)

For DM phenomenology, it is quite natural to construct WIMP models by extending the SM with a dark sector consisting of $\text{SU}(2)_L$ multiplets, whose neutral components could provide a viable DM candidate

- 1 multiplet in a high-dimensional representation:
 - **minimal DM model** [Cirelli et al., hep-ph/0512090]
 (DM stability is explained by an accidental symmetry)
- 2 types of multiplets: an artificial Z_2 symmetry is usually needed
 - **Singlet-doublet DM model** [Mahbubani & Senatore, hep-ph/0510064; D’Eramo, 0705.4493; Cohen et al., 1109.2604]
 - **Doublet-triplet DM model** [Dedes & Karamitros, 1403.7744]
 - \ldots
Connection to SUSY models

The above models with SU(2)_L multiplets can be understood as simplifications of more complete models, but the model parameters are much more free.

Singlet-doublet fermionic DM model:

- **Bino-Higgsino** sector in the MSSM

\[\mathcal{L}_{\text{mass}} \supset -\frac{1}{2} M_1 \tilde{B}\tilde{B} - \mu (\tilde{H}_u^+ \tilde{H}_d^- - \tilde{H}_u^0 \tilde{H}_d^0) + \frac{g' v_d}{\sqrt{2}} \tilde{B}\tilde{H}_d^0 - \frac{g' v_u}{\sqrt{2}} \tilde{B}\tilde{H}_u^0 + \text{h.c.} \]

- **Singlino-Higgsino** sector in the NMSSM

\[\mathcal{L}_{\text{mass}} \supset -\kappa v_s \tilde{S}\tilde{S} - \lambda v_s (\tilde{H}_u^+ \tilde{H}_d^- - \tilde{H}_u^0 \tilde{H}_d^0) + \lambda v_u \tilde{S}\tilde{H}_d^0 + \lambda v_d \tilde{S}\tilde{H}_u^0 + \text{h.c.} \]

Doublet-triplet fermionic DM model: **Higgsino-wino** sector in the MSSM

\[\mathcal{L}_{\text{mass}} \supset -\frac{1}{2} M_2 \tilde{W}^0 \tilde{W}^0 - M_2 \tilde{W}^+ \tilde{W}^- - \mu (\tilde{H}_u^+ \tilde{H}_d^- - \tilde{H}_u^0 \tilde{H}_d^0) - \frac{g v_d}{\sqrt{2}} \tilde{W}^0 \tilde{H}_d^0 \\
+ \frac{g v_u}{\sqrt{2}} \tilde{W}^0 \tilde{H}_u^0 - g v_u \tilde{H}_u^0 \tilde{W}^- - g v_d \tilde{W}^+ \tilde{H}_d^- + \text{h.c.} \]

Triplet-quadruplet fermionic DM model: **no analogue** in usual SUSY models
Custodial Symmetry

Standard model (SM) scalar potential \(V = -\mu^2 H^\dagger H + \lambda (H^\dagger H)^2 \) is a function of \(H^\dagger H \), which respects an \(SU(2)_L \times SU(2)_R \) global symmetry:

\[H^\dagger H = -\frac{1}{2} \epsilon_{AB} \epsilon^{ij} (\mathcal{H}^A)_i (\mathcal{H}^B)_j, \quad (\mathcal{H}^A)_i \equiv \begin{pmatrix} H^\dagger_i \\ H_i \end{pmatrix} \text{ is an } SU(2)_R \text{ doublet} \]

The custodial symmetry protects the tree-level relation

\[m_{W}^2 = (m_{Z}^2 c_{W}^2) = 1 \]

up to EW radiative corrections [Sikivie et al., NPB 173, 189 (1980)], and leads to \(T = U = 0 \) (note that \(\rho - 1 = \alpha T \))

The custodial symmetry is approximate in the SM, explicitly broken by the Yukawa couplings of fermions and the \(U(1)_Y \) gauge interaction.
Oblique Parameters and Electroweak Multiplets

We study the CEPC sensitivity to WIMP models with a dark sector consisting of **EW multiplets**. By imposing a Z_2 symmetry, the DM candidate would be the lightest mass eigenstate of the neutral components.

1. **EW oblique parameters** S, T, and U respond to **EW symmetry breaking**
 - Mass splittings among the multiplet components induced by the nonzero Higgs VEV would break the EW symmetry
 - Nonzero oblique parameters
 - If the Higgs VEV just gives a common mass shift to every component in a multiplet, the effect can be absorbed into the gauge-invariant mass term
 - No EW symmetry breaking effect manifests
 - Vanishing S, T, and U

2. S relates to the $U(1)_Y$ gauge field
 - A multiplet with zero hypercharge cannot contribute to S

3. Multiplet couplings to the Higgs respect a **custodial symmetry**
 - Vanishing T and U
Fermionic and Scalar Multiplets

In order to have nonzero contributions to EW oblique parameters, dark sector multiplets should couple to the SM Higgs doublet.

1. **Fermionic multiplets**
 - 1 vector-like fermionic $SU(2)_L$ multiplet: the Z_2 symmetry for stabilizing DM forbids the multiplet coupling to the Higgs $\Rightarrow S = T = U = 0$
 - 2 types of vector-like $SU(2)_L$ multiplets whose dimensions differ by one: Yukawa couplings split the components \Rightarrow Nonzero oblique parameters

2. **Scalar multiplets**
 - 1 real scalar multiplet Φ: the quartic coupling $\lambda'\Phi^\dagger\Phi H^\dagger H$ can only induce a common mass shift $\Rightarrow S = T = U = 0$
 - 1 complex scalar multiplet Φ: the quartic coupling $\lambda''\Phi^\dagger\tau^a\Phi H^\dagger\sigma^a H$ can induce mass splittings \Rightarrow Nonzero oblique parameters
 - ≥ 2 scalar multiplets: various trilinear and quartic couplings could break the mass degeneracy \Rightarrow Nonzero oblique parameters
Fermionic Models with $y_1 = 1$ and $y_2 = 1.5$

Expected 95% CL constraints from current, CEPC-B, and CEPC-I precisions of EW oblique parameters

Dot-dashed lines: free S, T, and U

Solid lines: assuming $U = 0$

DD-SI: excluded by SI direct detection

DD-SD: excluded by SD direct detection